MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth1 Unicode version

Theorem facth1 20040
Description: The factor theorem and its converse. A polynomial  F has a root at  A iff  G  =  x  -  A is a factor of  F. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p  |-  P  =  (Poly1 `  R )
ply1rem.b  |-  B  =  ( Base `  P
)
ply1rem.k  |-  K  =  ( Base `  R
)
ply1rem.x  |-  X  =  (var1 `  R )
ply1rem.m  |-  .-  =  ( -g `  P )
ply1rem.a  |-  A  =  (algSc `  P )
ply1rem.g  |-  G  =  ( X  .-  ( A `  N )
)
ply1rem.o  |-  O  =  (eval1 `  R )
ply1rem.1  |-  ( ph  ->  R  e. NzRing )
ply1rem.2  |-  ( ph  ->  R  e.  CRing )
ply1rem.3  |-  ( ph  ->  N  e.  K )
ply1rem.4  |-  ( ph  ->  F  e.  B )
facth1.z  |-  .0.  =  ( 0g `  R )
facth1.d  |-  .||  =  (
||r `  P )
Assertion
Ref Expression
facth1  |-  ( ph  ->  ( G  .||  F  <->  ( ( O `  F ) `  N )  =  .0.  ) )

Proof of Theorem facth1
StepHypRef Expression
1 ply1rem.1 . . . 4  |-  ( ph  ->  R  e. NzRing )
2 nzrrng 16287 . . . 4  |-  ( R  e. NzRing  ->  R  e.  Ring )
31, 2syl 16 . . 3  |-  ( ph  ->  R  e.  Ring )
4 ply1rem.4 . . 3  |-  ( ph  ->  F  e.  B )
5 ply1rem.p . . . . . 6  |-  P  =  (Poly1 `  R )
6 ply1rem.b . . . . . 6  |-  B  =  ( Base `  P
)
7 ply1rem.k . . . . . 6  |-  K  =  ( Base `  R
)
8 ply1rem.x . . . . . 6  |-  X  =  (var1 `  R )
9 ply1rem.m . . . . . 6  |-  .-  =  ( -g `  P )
10 ply1rem.a . . . . . 6  |-  A  =  (algSc `  P )
11 ply1rem.g . . . . . 6  |-  G  =  ( X  .-  ( A `  N )
)
12 ply1rem.o . . . . . 6  |-  O  =  (eval1 `  R )
13 ply1rem.2 . . . . . 6  |-  ( ph  ->  R  e.  CRing )
14 ply1rem.3 . . . . . 6  |-  ( ph  ->  N  e.  K )
15 eqid 2404 . . . . . 6  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
16 eqid 2404 . . . . . 6  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
17 facth1.z . . . . . 6  |-  .0.  =  ( 0g `  R )
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 20038 . . . . 5  |-  ( ph  ->  ( G  e.  (Monic1p `  R )  /\  (
( deg1  `
 R ) `  G )  =  1  /\  ( `' ( O `  G )
" {  .0.  }
)  =  { N } ) )
1918simp1d 969 . . . 4  |-  ( ph  ->  G  e.  (Monic1p `  R
) )
20 eqid 2404 . . . . 5  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
2120, 15mon1puc1p 20026 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  (Monic1p `  R ) )  ->  G  e.  (Unic1p `  R ) )
223, 19, 21syl2anc 643 . . 3  |-  ( ph  ->  G  e.  (Unic1p `  R
) )
23 facth1.d . . . 4  |-  .||  =  (
||r `  P )
24 eqid 2404 . . . 4  |-  ( 0g
`  P )  =  ( 0g `  P
)
25 eqid 2404 . . . 4  |-  (rem1p `  R
)  =  (rem1p `  R
)
265, 23, 6, 20, 24, 25dvdsr1p 20037 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( G  .||  F 
<->  ( F (rem1p `  R
) G )  =  ( 0g `  P
) ) )
273, 4, 22, 26syl3anc 1184 . 2  |-  ( ph  ->  ( G  .||  F  <->  ( F
(rem1p `
 R ) G )  =  ( 0g
`  P ) ) )
285, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 4, 25ply1rem 20039 . . 3  |-  ( ph  ->  ( F (rem1p `  R
) G )  =  ( A `  (
( O `  F
) `  N )
) )
295, 10, 17, 24ply1scl0 16636 . . . . 5  |-  ( R  e.  Ring  ->  ( A `
 .0.  )  =  ( 0g `  P
) )
303, 29syl 16 . . . 4  |-  ( ph  ->  ( A `  .0.  )  =  ( 0g `  P ) )
3130eqcomd 2409 . . 3  |-  ( ph  ->  ( 0g `  P
)  =  ( A `
 .0.  ) )
3228, 31eqeq12d 2418 . 2  |-  ( ph  ->  ( ( F (rem1p `  R ) G )  =  ( 0g `  P )  <->  ( A `  ( ( O `  F ) `  N
) )  =  ( A `  .0.  )
) )
335, 10, 7, 6ply1sclf1 16635 . . . 4  |-  ( R  e.  Ring  ->  A : K -1-1-> B )
343, 33syl 16 . . 3  |-  ( ph  ->  A : K -1-1-> B
)
35 eqid 2404 . . . . 5  |-  ( R  ^s  K )  =  ( R  ^s  K )
36 eqid 2404 . . . . 5  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
37 fvex 5701 . . . . . . 7  |-  ( Base `  R )  e.  _V
387, 37eqeltri 2474 . . . . . 6  |-  K  e. 
_V
3938a1i 11 . . . . 5  |-  ( ph  ->  K  e.  _V )
4012, 5, 35, 7evl1rhm 19902 . . . . . . . 8  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
4113, 40syl 16 . . . . . . 7  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
426, 36rhmf 15782 . . . . . . 7  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
4341, 42syl 16 . . . . . 6  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
4443, 4ffvelrnd 5830 . . . . 5  |-  ( ph  ->  ( O `  F
)  e.  ( Base `  ( R  ^s  K ) ) )
4535, 7, 36, 1, 39, 44pwselbas 13666 . . . 4  |-  ( ph  ->  ( O `  F
) : K --> K )
4645, 14ffvelrnd 5830 . . 3  |-  ( ph  ->  ( ( O `  F ) `  N
)  e.  K )
477, 17rng0cl 15640 . . . 4  |-  ( R  e.  Ring  ->  .0.  e.  K )
483, 47syl 16 . . 3  |-  ( ph  ->  .0.  e.  K )
49 f1fveq 5967 . . 3  |-  ( ( A : K -1-1-> B  /\  ( ( ( O `
 F ) `  N )  e.  K  /\  .0.  e.  K ) )  ->  ( ( A `  ( ( O `  F ) `  N ) )  =  ( A `  .0.  ) 
<->  ( ( O `  F ) `  N
)  =  .0.  )
)
5034, 46, 48, 49syl12anc 1182 . 2  |-  ( ph  ->  ( ( A `  ( ( O `  F ) `  N
) )  =  ( A `  .0.  )  <->  ( ( O `  F
) `  N )  =  .0.  ) )
5127, 32, 503bitrd 271 1  |-  ( ph  ->  ( G  .||  F  <->  ( ( O `  F ) `  N )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   _Vcvv 2916   {csn 3774   class class class wbr 4172   `'ccnv 4836   "cima 4840   -->wf 5409   -1-1->wf1 5410   ` cfv 5413  (class class class)co 6040   1c1 8947   Basecbs 13424    ^s cpws 13625   0gc0g 13678   -gcsg 14643   Ringcrg 15615   CRingccrg 15616   ||rcdsr 15698   RingHom crh 15772  NzRingcnzr 16283  algSccascl 16326  var1cv1 16525  Poly1cpl1 16526  eval1ce1 16528   deg1 cdg1 19930  Monic1pcmn1 20001  Unic1pcuc1p 20002  rem1pcr1p 20004
This theorem is referenced by:  fta1glem1  20041  fta1glem2  20042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-prds 13626  df-pws 13628  df-0g 13682  df-gsum 13683  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-ghm 14959  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-rnghom 15774  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lsp 16003  df-nzr 16284  df-rlreg 16298  df-assa 16327  df-asp 16328  df-ascl 16329  df-psr 16372  df-mvr 16373  df-mpl 16374  df-evls 16375  df-evl 16376  df-opsr 16380  df-psr1 16531  df-vr1 16532  df-ply1 16533  df-evl1 16535  df-coe1 16536  df-cnfld 16659  df-mdeg 19931  df-deg1 19932  df-mon1 20006  df-uc1p 20007  df-q1p 20008  df-r1p 20009
  Copyright terms: Public domain W3C validator