MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth1 Structured version   Unicode version

Theorem facth1 21579
Description: The factor theorem and its converse. A polynomial  F has a root at  A iff  G  =  x  -  A is a factor of  F. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p  |-  P  =  (Poly1 `  R )
ply1rem.b  |-  B  =  ( Base `  P
)
ply1rem.k  |-  K  =  ( Base `  R
)
ply1rem.x  |-  X  =  (var1 `  R )
ply1rem.m  |-  .-  =  ( -g `  P )
ply1rem.a  |-  A  =  (algSc `  P )
ply1rem.g  |-  G  =  ( X  .-  ( A `  N )
)
ply1rem.o  |-  O  =  (eval1 `  R )
ply1rem.1  |-  ( ph  ->  R  e. NzRing )
ply1rem.2  |-  ( ph  ->  R  e.  CRing )
ply1rem.3  |-  ( ph  ->  N  e.  K )
ply1rem.4  |-  ( ph  ->  F  e.  B )
facth1.z  |-  .0.  =  ( 0g `  R )
facth1.d  |-  .||  =  (
||r `  P )
Assertion
Ref Expression
facth1  |-  ( ph  ->  ( G  .||  F  <->  ( ( O `  F ) `  N )  =  .0.  ) )

Proof of Theorem facth1
StepHypRef Expression
1 ply1rem.1 . . . 4  |-  ( ph  ->  R  e. NzRing )
2 nzrrng 17321 . . . 4  |-  ( R  e. NzRing  ->  R  e.  Ring )
31, 2syl 16 . . 3  |-  ( ph  ->  R  e.  Ring )
4 ply1rem.4 . . 3  |-  ( ph  ->  F  e.  B )
5 ply1rem.p . . . . . 6  |-  P  =  (Poly1 `  R )
6 ply1rem.b . . . . . 6  |-  B  =  ( Base `  P
)
7 ply1rem.k . . . . . 6  |-  K  =  ( Base `  R
)
8 ply1rem.x . . . . . 6  |-  X  =  (var1 `  R )
9 ply1rem.m . . . . . 6  |-  .-  =  ( -g `  P )
10 ply1rem.a . . . . . 6  |-  A  =  (algSc `  P )
11 ply1rem.g . . . . . 6  |-  G  =  ( X  .-  ( A `  N )
)
12 ply1rem.o . . . . . 6  |-  O  =  (eval1 `  R )
13 ply1rem.2 . . . . . 6  |-  ( ph  ->  R  e.  CRing )
14 ply1rem.3 . . . . . 6  |-  ( ph  ->  N  e.  K )
15 eqid 2441 . . . . . 6  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
16 eqid 2441 . . . . . 6  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
17 facth1.z . . . . . 6  |-  .0.  =  ( 0g `  R )
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 21577 . . . . 5  |-  ( ph  ->  ( G  e.  (Monic1p `  R )  /\  (
( deg1  `
 R ) `  G )  =  1  /\  ( `' ( O `  G )
" {  .0.  }
)  =  { N } ) )
1918simp1d 995 . . . 4  |-  ( ph  ->  G  e.  (Monic1p `  R
) )
20 eqid 2441 . . . . 5  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
2120, 15mon1puc1p 21565 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  (Monic1p `  R ) )  ->  G  e.  (Unic1p `  R ) )
223, 19, 21syl2anc 656 . . 3  |-  ( ph  ->  G  e.  (Unic1p `  R
) )
23 facth1.d . . . 4  |-  .||  =  (
||r `  P )
24 eqid 2441 . . . 4  |-  ( 0g
`  P )  =  ( 0g `  P
)
25 eqid 2441 . . . 4  |-  (rem1p `  R
)  =  (rem1p `  R
)
265, 23, 6, 20, 24, 25dvdsr1p 21576 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( G  .||  F 
<->  ( F (rem1p `  R
) G )  =  ( 0g `  P
) ) )
273, 4, 22, 26syl3anc 1213 . 2  |-  ( ph  ->  ( G  .||  F  <->  ( F
(rem1p `
 R ) G )  =  ( 0g
`  P ) ) )
285, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 4, 25ply1rem 21578 . . 3  |-  ( ph  ->  ( F (rem1p `  R
) G )  =  ( A `  (
( O `  F
) `  N )
) )
295, 10, 17, 24ply1scl0 17696 . . . . 5  |-  ( R  e.  Ring  ->  ( A `
 .0.  )  =  ( 0g `  P
) )
303, 29syl 16 . . . 4  |-  ( ph  ->  ( A `  .0.  )  =  ( 0g `  P ) )
3130eqcomd 2446 . . 3  |-  ( ph  ->  ( 0g `  P
)  =  ( A `
 .0.  ) )
3228, 31eqeq12d 2455 . 2  |-  ( ph  ->  ( ( F (rem1p `  R ) G )  =  ( 0g `  P )  <->  ( A `  ( ( O `  F ) `  N
) )  =  ( A `  .0.  )
) )
335, 10, 7, 6ply1sclf1 17695 . . . 4  |-  ( R  e.  Ring  ->  A : K -1-1-> B )
343, 33syl 16 . . 3  |-  ( ph  ->  A : K -1-1-> B
)
35 eqid 2441 . . . . 5  |-  ( R  ^s  K )  =  ( R  ^s  K )
36 eqid 2441 . . . . 5  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
37 fvex 5698 . . . . . . 7  |-  ( Base `  R )  e.  _V
387, 37eqeltri 2511 . . . . . 6  |-  K  e. 
_V
3938a1i 11 . . . . 5  |-  ( ph  ->  K  e.  _V )
4012, 5, 35, 7evl1rhm 21438 . . . . . . . 8  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
4113, 40syl 16 . . . . . . 7  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
426, 36rhmf 16804 . . . . . . 7  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
4341, 42syl 16 . . . . . 6  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
4443, 4ffvelrnd 5841 . . . . 5  |-  ( ph  ->  ( O `  F
)  e.  ( Base `  ( R  ^s  K ) ) )
4535, 7, 36, 1, 39, 44pwselbas 14423 . . . 4  |-  ( ph  ->  ( O `  F
) : K --> K )
4645, 14ffvelrnd 5841 . . 3  |-  ( ph  ->  ( ( O `  F ) `  N
)  e.  K )
477, 17rng0cl 16656 . . . 4  |-  ( R  e.  Ring  ->  .0.  e.  K )
483, 47syl 16 . . 3  |-  ( ph  ->  .0.  e.  K )
49 f1fveq 5972 . . 3  |-  ( ( A : K -1-1-> B  /\  ( ( ( O `
 F ) `  N )  e.  K  /\  .0.  e.  K ) )  ->  ( ( A `  ( ( O `  F ) `  N ) )  =  ( A `  .0.  ) 
<->  ( ( O `  F ) `  N
)  =  .0.  )
)
5034, 46, 48, 49syl12anc 1211 . 2  |-  ( ph  ->  ( ( A `  ( ( O `  F ) `  N
) )  =  ( A `  .0.  )  <->  ( ( O `  F
) `  N )  =  .0.  ) )
5127, 32, 503bitrd 279 1  |-  ( ph  ->  ( G  .||  F  <->  ( ( O `  F ) `  N )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1364    e. wcel 1761   _Vcvv 2970   {csn 3874   class class class wbr 4289   `'ccnv 4835   "cima 4839   -->wf 5411   -1-1->wf1 5412   ` cfv 5415  (class class class)co 6090   1c1 9279   Basecbs 14170   0gc0g 14374    ^s cpws 14381   -gcsg 15409   Ringcrg 16635   CRingccrg 16636   ||rcdsr 16720   RingHom crh 16794  NzRingcnzr 17317  algSccascl 17361  var1cv1 17583  Poly1cpl1 17584  eval1ce1 17586   deg1 cdg1 21466  Monic1pcmn1 21540  Unic1pcuc1p 21541  rem1pcr1p 21543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-ofr 6320  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-sup 7687  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-0g 14376  df-gsum 14377  df-prds 14382  df-pws 14384  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-ghm 15738  df-cntz 15828  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-rnghom 16796  df-subrg 16843  df-lmod 16930  df-lss 16992  df-lsp 17031  df-nzr 17318  df-rlreg 17332  df-assa 17362  df-asp 17363  df-ascl 17364  df-psr 17407  df-mvr 17408  df-mpl 17409  df-evls 17410  df-evl 17411  df-opsr 17415  df-psr1 17589  df-vr1 17590  df-ply1 17591  df-evl1 17593  df-coe1 17594  df-cnfld 17719  df-mdeg 21467  df-deg1 21468  df-mon1 21545  df-uc1p 21546  df-q1p 21547  df-r1p 21548
This theorem is referenced by:  fta1glem1  21580  fta1glem2  21581
  Copyright terms: Public domain W3C validator