MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth Structured version   Unicode version

Theorem facth 22994
Description: The factor theorem. If a polynomial  F has a root at  A, then  G  =  x  -  A is a factor of  F (and the other factor is  F quot  G). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
facth.1  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
Assertion
Ref Expression
facth  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  =  ( G  oF  x.  ( F quot  G ) ) )

Proof of Theorem facth
StepHypRef Expression
1 facth.1 . . . . 5  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
2 eqid 2402 . . . . 5  |-  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  =  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )
31, 2plyrem 22993 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  =  ( CC  X.  { ( F `  A ) } ) )
433adant3 1017 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  =  ( CC  X.  { ( F `  A ) } ) )
5 simp3 999 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F `  A )  =  0 )
65sneqd 3984 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  { ( F `  A ) }  =  { 0 } )
76xpeq2d 4847 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( CC  X.  { ( F `
 A ) } )  =  ( CC 
X.  { 0 } ) )
84, 7eqtrd 2443 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  =  ( CC  X.  { 0 } ) )
9 cnex 9603 . . . 4  |-  CC  e.  _V
109a1i 11 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  CC  e.  _V )
11 simp1 997 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  e.  (Poly `  S )
)
12 plyf 22887 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
1311, 12syl 17 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F : CC --> CC )
141plyremlem 22992 . . . . . . 7  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
15143ad2ant2 1019 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
1615simp1d 1009 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  G  e.  (Poly `  CC )
)
17 plyssc 22889 . . . . . . 7  |-  (Poly `  S )  C_  (Poly `  CC )
1817, 11sseldi 3440 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  e.  (Poly `  CC )
)
1915simp2d 1010 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (deg `  G )  =  1 )
20 ax-1ne0 9591 . . . . . . . . 9  |-  1  =/=  0
2120a1i 11 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  1  =/=  0 )
2219, 21eqnetrd 2696 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (deg `  G )  =/=  0
)
23 fveq2 5849 . . . . . . . . 9  |-  ( G  =  0p  -> 
(deg `  G )  =  (deg `  0p
) )
24 dgr0 22951 . . . . . . . . 9  |-  (deg ` 
0p )  =  0
2523, 24syl6eq 2459 . . . . . . . 8  |-  ( G  =  0p  -> 
(deg `  G )  =  0 )
2625necon3i 2643 . . . . . . 7  |-  ( (deg
`  G )  =/=  0  ->  G  =/=  0p )
2722, 26syl 17 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  G  =/=  0p )
28 quotcl2 22990 . . . . . 6  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0p )  ->  ( F quot  G )  e.  (Poly `  CC ) )
2918, 16, 27, 28syl3anc 1230 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F quot  G )  e.  (Poly `  CC ) )
30 plymulcl 22910 . . . . 5  |-  ( ( G  e.  (Poly `  CC )  /\  ( F quot  G )  e.  (Poly `  CC ) )  -> 
( G  oF  x.  ( F quot  G
) )  e.  (Poly `  CC ) )
3116, 29, 30syl2anc 659 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  oF  x.  ( F quot  G ) )  e.  (Poly `  CC )
)
32 plyf 22887 . . . 4  |-  ( ( G  oF  x.  ( F quot  G ) )  e.  (Poly `  CC )  ->  ( G  oF  x.  ( F quot  G ) ) : CC --> CC )
3331, 32syl 17 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  oF  x.  ( F quot  G ) ) : CC --> CC )
34 ofsubeq0 10573 . . 3  |-  ( ( CC  e.  _V  /\  F : CC --> CC  /\  ( G  oF  x.  ( F quot  G ) ) : CC --> CC )  ->  ( ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  =  ( CC  X.  { 0 } )  <-> 
F  =  ( G  oF  x.  ( F quot  G ) ) ) )
3510, 13, 33, 34syl3anc 1230 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (
( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  =  ( CC  X.  {
0 } )  <->  F  =  ( G  oF  x.  ( F quot  G ) ) ) )
368, 35mpbid 210 1  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  =  ( G  oF  x.  ( F quot  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   _Vcvv 3059   {csn 3972    X. cxp 4821   `'ccnv 4822   "cima 4826   -->wf 5565   ` cfv 5569  (class class class)co 6278    oFcof 6519   CCcc 9520   0cc0 9522   1c1 9523    x. cmul 9527    - cmin 9841   0pc0p 22368  Polycply 22873   Xpcidp 22874  degcdgr 22876   quot cquot 22978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-oi 7969  df-card 8352  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-rp 11266  df-fz 11727  df-fzo 11855  df-fl 11966  df-seq 12152  df-exp 12211  df-hash 12453  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-clim 13460  df-rlim 13461  df-sum 13658  df-0p 22369  df-ply 22877  df-idp 22878  df-coe 22879  df-dgr 22880  df-quot 22979
This theorem is referenced by:  fta1lem  22995  vieta1lem1  22998  vieta1lem2  22999
  Copyright terms: Public domain W3C validator