MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facp1 Structured version   Unicode version

Theorem facp1 12414
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )

Proof of Theorem facp1
StepHypRef Expression
1 elnn0 10822 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 peano2nn 10572 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
3 facnn 12411 . . . . 5  |-  ( ( N  +  1 )  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  (  seq 1
(  x.  ,  _I  ) `  ( N  +  1 ) ) )
42, 3syl 17 . . . 4  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  (  seq 1
(  x.  ,  _I  ) `  ( N  +  1 ) ) )
5 ovex 6277 . . . . . . 7  |-  ( N  +  1 )  e. 
_V
6 fvi 5882 . . . . . . 7  |-  ( ( N  +  1 )  e.  _V  ->  (  _I  `  ( N  + 
1 ) )  =  ( N  +  1 ) )
75, 6ax-mp 5 . . . . . 6  |-  (  _I 
`  ( N  + 
1 ) )  =  ( N  +  1 )
87oveq2i 6260 . . . . 5  |-  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  (  _I  `  ( N  + 
1 ) ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  ( N  + 
1 ) )
9 seqp1 12178 . . . . . 6  |-  ( N  e.  ( ZZ>= `  1
)  ->  (  seq 1 (  x.  ,  _I  ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  (  _I  `  ( N  +  1
) ) ) )
10 nnuz 11145 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
119, 10eleq2s 2524 . . . . 5  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  _I  ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  (  _I  `  ( N  +  1
) ) ) )
12 facnn 12411 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ) `  N )
)
1312oveq1d 6264 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  ( N  + 
1 ) ) )
148, 11, 133eqtr4a 2488 . . . 4  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  _I  ) `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
154, 14eqtrd 2462 . . 3  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
16 0p1e1 10672 . . . . . 6  |-  ( 0  +  1 )  =  1
1716fveq2i 5828 . . . . 5  |-  ( ! `
 ( 0  +  1 ) )  =  ( ! `  1
)
18 fac1 12413 . . . . 5  |-  ( ! `
 1 )  =  1
1917, 18eqtri 2450 . . . 4  |-  ( ! `
 ( 0  +  1 ) )  =  1
20 oveq1 6256 . . . . 5  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
2120fveq2d 5829 . . . 4  |-  ( N  =  0  ->  ( ! `  ( N  +  1 ) )  =  ( ! `  ( 0  +  1 ) ) )
22 fveq2 5825 . . . . . 6  |-  ( N  =  0  ->  ( ! `  N )  =  ( ! ` 
0 ) )
2322, 20oveq12d 6267 . . . . 5  |-  ( N  =  0  ->  (
( ! `  N
)  x.  ( N  +  1 ) )  =  ( ( ! `
 0 )  x.  ( 0  +  1 ) ) )
24 fac0 12412 . . . . . . 7  |-  ( ! `
 0 )  =  1
2524, 16oveq12i 6261 . . . . . 6  |-  ( ( ! `  0 )  x.  ( 0  +  1 ) )  =  ( 1  x.  1 )
26 1t1e1 10708 . . . . . 6  |-  ( 1  x.  1 )  =  1
2725, 26eqtri 2450 . . . . 5  |-  ( ( ! `  0 )  x.  ( 0  +  1 ) )  =  1
2823, 27syl6eq 2478 . . . 4  |-  ( N  =  0  ->  (
( ! `  N
)  x.  ( N  +  1 ) )  =  1 )
2919, 21, 283eqtr4a 2488 . . 3  |-  ( N  =  0  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
3015, 29jaoi 380 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( ! `  ( N  +  1
) )  =  ( ( ! `  N
)  x.  ( N  +  1 ) ) )
311, 30sylbi 198 1  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    = wceq 1437    e. wcel 1872   _Vcvv 3022    _I cid 4706   ` cfv 5544  (class class class)co 6249   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495   NNcn 10560   NN0cn0 10820   ZZ>=cuz 11110    seqcseq 12163   !cfa 12409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-nn 10561  df-n0 10821  df-z 10889  df-uz 11111  df-seq 12164  df-fac 12410
This theorem is referenced by:  fac2  12415  fac3  12416  fac4  12417  facnn2  12418  faccl  12419  facdiv  12422  facwordi  12424  faclbnd  12425  faclbnd6  12434  facubnd  12435  bcm1k  12450  bcp1n  12451  4bc2eq6  12464  efcllem  14075  ef01bndlem  14181  eirrlem  14199  dvdsfac  14303  prmfac1  14614  pcfac  14787  2expltfac  15006  aaliou3lem2  23241  aaliou3lem8  23243  dvtaylp  23267  advlogexp  23542  facgam  23933  bcmono  24147  subfacval2  29862  subfaclim  29863  faclim  30333  faclim2  30335  bccp1k  36603  binomcxplemwb  36610  wallispi2lem2  37817  stirlinglem4  37822  etransclem24  38006  etransclem28  38010  etransclem38  38020
  Copyright terms: Public domain W3C validator