MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facndiv Structured version   Unicode version

Theorem facndiv 12334
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
facndiv  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ )

Proof of Theorem facndiv
StepHypRef Expression
1 nnre 10543 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
2 recnz 10936 . . . 4  |-  ( ( N  e.  RR  /\  1  <  N )  ->  -.  ( 1  /  N
)  e.  ZZ )
31, 2sylan 471 . . 3  |-  ( ( N  e.  NN  /\  1  <  N )  ->  -.  ( 1  /  N
)  e.  ZZ )
43ad2ant2lr 747 . 2  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( 1  /  N
)  e.  ZZ )
5 facdiv 12333 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
653expa 1196 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  N  <_  M
)  ->  ( ( ! `  M )  /  N )  e.  NN )
76nnzd 10965 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  N  <_  M
)  ->  ( ( ! `  M )  /  N )  e.  ZZ )
87adantrl 715 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ! `  M
)  /  N )  e.  ZZ )
9 zsubcl 10905 . . . . 5  |-  ( ( ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  /\  ( ( ! `  M )  /  N
)  e.  ZZ )  ->  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) )  e.  ZZ )
109ex 434 . . . 4  |-  ( ( ( ( ! `  M )  +  1 )  /  N )  e.  ZZ  ->  (
( ( ! `  M )  /  N
)  e.  ZZ  ->  ( ( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  e.  ZZ ) )
118, 10syl5com 30 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  ->  ( ( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  e.  ZZ ) )
12 faccl 12331 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
1312nncnd 10552 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  CC )
14 peano2cn 9751 . . . . . . . 8  |-  ( ( ! `  M )  e.  CC  ->  (
( ! `  M
)  +  1 )  e.  CC )
1513, 14syl 16 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ! `  M )  +  1 )  e.  CC )
1615ad2antrr 725 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ! `  M
)  +  1 )  e.  CC )
1713ad2antrr 725 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  ( ! `  M )  e.  CC )
18 nncn 10544 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
19 nnne0 10568 . . . . . . . 8  |-  ( N  e.  NN  ->  N  =/=  0 )
2018, 19jca 532 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
2120ad2antlr 726 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  ( N  e.  CC  /\  N  =/=  0 ) )
22 divsubdir 10240 . . . . . 6  |-  ( ( ( ( ! `  M )  +  1 )  e.  CC  /\  ( ! `  M )  e.  CC  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( ( ( ( ! `  M )  +  1 )  -  ( ! `  M ) )  /  N )  =  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) ) )
2316, 17, 21, 22syl3anc 1228 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  /  N )  =  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) ) )
24 ax-1cn 9550 . . . . . . . 8  |-  1  e.  CC
25 pncan2 9827 . . . . . . . 8  |-  ( ( ( ! `  M
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  =  1 )
2613, 24, 25sylancl 662 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ( ! `  M
)  +  1 )  -  ( ! `  M ) )  =  1 )
2726oveq1d 6299 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( ( ( ! `  M )  +  1 )  -  ( ! `
 M ) )  /  N )  =  ( 1  /  N
) )
2827ad2antrr 725 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  /  N )  =  ( 1  /  N ) )
2923, 28eqtr3d 2510 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  =  ( 1  /  N ) )
3029eleq1d 2536 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ( ! `  M )  +  1 )  /  N )  -  (
( ! `  M
)  /  N ) )  e.  ZZ  <->  ( 1  /  N )  e.  ZZ ) )
3111, 30sylibd 214 . 2  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  ->  ( 1  /  N )  e.  ZZ ) )
324, 31mtod 177 1  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   NNcn 10536   NN0cn0 10795   ZZcz 10864   !cfa 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-seq 12076  df-fac 12322
This theorem is referenced by:  infpnlem1  14287
  Copyright terms: Public domain W3C validator