MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facndiv Structured version   Unicode version

Theorem facndiv 12069
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
facndiv  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ )

Proof of Theorem facndiv
StepHypRef Expression
1 nnre 10334 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
2 recnz 10722 . . . 4  |-  ( ( N  e.  RR  /\  1  <  N )  ->  -.  ( 1  /  N
)  e.  ZZ )
31, 2sylan 471 . . 3  |-  ( ( N  e.  NN  /\  1  <  N )  ->  -.  ( 1  /  N
)  e.  ZZ )
43ad2ant2lr 747 . 2  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( 1  /  N
)  e.  ZZ )
5 facdiv 12068 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
653expa 1187 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  N  <_  M
)  ->  ( ( ! `  M )  /  N )  e.  NN )
76nnzd 10751 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  N  <_  M
)  ->  ( ( ! `  M )  /  N )  e.  ZZ )
87adantrl 715 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ! `  M
)  /  N )  e.  ZZ )
9 zsubcl 10692 . . . . 5  |-  ( ( ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  /\  ( ( ! `  M )  /  N
)  e.  ZZ )  ->  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) )  e.  ZZ )
109ex 434 . . . 4  |-  ( ( ( ( ! `  M )  +  1 )  /  N )  e.  ZZ  ->  (
( ( ! `  M )  /  N
)  e.  ZZ  ->  ( ( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  e.  ZZ ) )
118, 10syl5com 30 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  ->  ( ( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  e.  ZZ ) )
12 faccl 12066 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
1312nncnd 10343 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  CC )
14 peano2cn 9546 . . . . . . . 8  |-  ( ( ! `  M )  e.  CC  ->  (
( ! `  M
)  +  1 )  e.  CC )
1513, 14syl 16 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ! `  M )  +  1 )  e.  CC )
1615ad2antrr 725 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ! `  M
)  +  1 )  e.  CC )
1713ad2antrr 725 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  ( ! `  M )  e.  CC )
18 nncn 10335 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
19 nnne0 10359 . . . . . . . 8  |-  ( N  e.  NN  ->  N  =/=  0 )
2018, 19jca 532 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
2120ad2antlr 726 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  ( N  e.  CC  /\  N  =/=  0 ) )
22 divsubdir 10032 . . . . . 6  |-  ( ( ( ( ! `  M )  +  1 )  e.  CC  /\  ( ! `  M )  e.  CC  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( ( ( ( ! `  M )  +  1 )  -  ( ! `  M ) )  /  N )  =  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) ) )
2316, 17, 21, 22syl3anc 1218 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  /  N )  =  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) ) )
24 ax-1cn 9345 . . . . . . . 8  |-  1  e.  CC
25 pncan2 9622 . . . . . . . 8  |-  ( ( ( ! `  M
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  =  1 )
2613, 24, 25sylancl 662 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ( ! `  M
)  +  1 )  -  ( ! `  M ) )  =  1 )
2726oveq1d 6111 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( ( ( ! `  M )  +  1 )  -  ( ! `
 M ) )  /  N )  =  ( 1  /  N
) )
2827ad2antrr 725 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  /  N )  =  ( 1  /  N ) )
2923, 28eqtr3d 2477 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  =  ( 1  /  N ) )
3029eleq1d 2509 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ( ! `  M )  +  1 )  /  N )  -  (
( ! `  M
)  /  N ) )  e.  ZZ  <->  ( 1  /  N )  e.  ZZ ) )
3111, 30sylibd 214 . 2  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  ->  ( 1  /  N )  e.  ZZ ) )
324, 31mtod 177 1  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288    + caddc 9290    < clt 9423    <_ cle 9424    - cmin 9600    / cdiv 9998   NNcn 10327   NN0cn0 10584   ZZcz 10651   !cfa 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-2nd 6583  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-n0 10585  df-z 10652  df-uz 10867  df-seq 11812  df-fac 12057
This theorem is referenced by:  infpnlem1  13976
  Copyright terms: Public domain W3C validator