Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim2 Structured version   Unicode version

Theorem faclim2 28750
Description: Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypothesis
Ref Expression
faclim2.1  |-  F  =  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ M
) )  /  ( ! `  ( n  +  M ) ) ) )
Assertion
Ref Expression
faclim2  |-  ( M  e.  NN0  ->  F  ~~>  1 )
Distinct variable group:    n, M
Allowed substitution hint:    F( n)

Proof of Theorem faclim2
Dummy variables  m  a  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim2.1 . 2  |-  F  =  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ M
) )  /  ( ! `  ( n  +  M ) ) ) )
2 oveq2 6290 . . . . . . 7  |-  ( a  =  0  ->  (
( n  +  1 ) ^ a )  =  ( ( n  +  1 ) ^
0 ) )
32oveq2d 6298 . . . . . 6  |-  ( a  =  0  ->  (
( ! `  n
)  x.  ( ( n  +  1 ) ^ a ) )  =  ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ 0 ) ) )
4 oveq2 6290 . . . . . . 7  |-  ( a  =  0  ->  (
n  +  a )  =  ( n  + 
0 ) )
54fveq2d 5868 . . . . . 6  |-  ( a  =  0  ->  ( ! `  ( n  +  a ) )  =  ( ! `  ( n  +  0
) ) )
63, 5oveq12d 6300 . . . . 5  |-  ( a  =  0  ->  (
( ( ! `  n )  x.  (
( n  +  1 ) ^ a ) )  /  ( ! `
 ( n  +  a ) ) )  =  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
0 ) )  / 
( ! `  (
n  +  0 ) ) ) )
76mpteq2dv 4534 . . . 4  |-  ( a  =  0  ->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ a ) )  /  ( ! `
 ( n  +  a ) ) ) )  =  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ 0 ) )  /  ( ! `  ( n  +  0
) ) ) ) )
87breq1d 4457 . . 3  |-  ( a  =  0  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ a
) )  /  ( ! `  ( n  +  a ) ) ) )  ~~>  1  <->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ 0 ) )  /  ( ! `
 ( n  + 
0 ) ) ) )  ~~>  1 ) )
9 oveq2 6290 . . . . . . 7  |-  ( a  =  m  ->  (
( n  +  1 ) ^ a )  =  ( ( n  +  1 ) ^
m ) )
109oveq2d 6298 . . . . . 6  |-  ( a  =  m  ->  (
( ! `  n
)  x.  ( ( n  +  1 ) ^ a ) )  =  ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) ) )
11 oveq2 6290 . . . . . . 7  |-  ( a  =  m  ->  (
n  +  a )  =  ( n  +  m ) )
1211fveq2d 5868 . . . . . 6  |-  ( a  =  m  ->  ( ! `  ( n  +  a ) )  =  ( ! `  ( n  +  m
) ) )
1310, 12oveq12d 6300 . . . . 5  |-  ( a  =  m  ->  (
( ( ! `  n )  x.  (
( n  +  1 ) ^ a ) )  /  ( ! `
 ( n  +  a ) ) )  =  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
m ) )  / 
( ! `  (
n  +  m ) ) ) )
1413mpteq2dv 4534 . . . 4  |-  ( a  =  m  ->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ a ) )  /  ( ! `
 ( n  +  a ) ) ) )  =  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ m ) )  /  ( ! `  ( n  +  m
) ) ) ) )
1514breq1d 4457 . . 3  |-  ( a  =  m  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ a
) )  /  ( ! `  ( n  +  a ) ) ) )  ~~>  1  <->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ m ) )  /  ( ! `
 ( n  +  m ) ) ) )  ~~>  1 ) )
16 oveq2 6290 . . . . . . 7  |-  ( a  =  ( m  + 
1 )  ->  (
( n  +  1 ) ^ a )  =  ( ( n  +  1 ) ^
( m  +  1 ) ) )
1716oveq2d 6298 . . . . . 6  |-  ( a  =  ( m  + 
1 )  ->  (
( ! `  n
)  x.  ( ( n  +  1 ) ^ a ) )  =  ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ (
m  +  1 ) ) ) )
18 oveq2 6290 . . . . . . 7  |-  ( a  =  ( m  + 
1 )  ->  (
n  +  a )  =  ( n  +  ( m  +  1
) ) )
1918fveq2d 5868 . . . . . 6  |-  ( a  =  ( m  + 
1 )  ->  ( ! `  ( n  +  a ) )  =  ( ! `  ( n  +  (
m  +  1 ) ) ) )
2017, 19oveq12d 6300 . . . . 5  |-  ( a  =  ( m  + 
1 )  ->  (
( ( ! `  n )  x.  (
( n  +  1 ) ^ a ) )  /  ( ! `
 ( n  +  a ) ) )  =  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
( m  +  1 ) ) )  / 
( ! `  (
n  +  ( m  +  1 ) ) ) ) )
2120mpteq2dv 4534 . . . 4  |-  ( a  =  ( m  + 
1 )  ->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ a ) )  /  ( ! `
 ( n  +  a ) ) ) )  =  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ ( m  + 
1 ) ) )  /  ( ! `  ( n  +  (
m  +  1 ) ) ) ) ) )
2221breq1d 4457 . . 3  |-  ( a  =  ( m  + 
1 )  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ a
) )  /  ( ! `  ( n  +  a ) ) ) )  ~~>  1  <->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ ( m  +  1 ) ) )  /  ( ! `
 ( n  +  ( m  +  1
) ) ) ) )  ~~>  1 ) )
23 oveq2 6290 . . . . . . 7  |-  ( a  =  M  ->  (
( n  +  1 ) ^ a )  =  ( ( n  +  1 ) ^ M ) )
2423oveq2d 6298 . . . . . 6  |-  ( a  =  M  ->  (
( ! `  n
)  x.  ( ( n  +  1 ) ^ a ) )  =  ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ M
) ) )
25 oveq2 6290 . . . . . . 7  |-  ( a  =  M  ->  (
n  +  a )  =  ( n  +  M ) )
2625fveq2d 5868 . . . . . 6  |-  ( a  =  M  ->  ( ! `  ( n  +  a ) )  =  ( ! `  ( n  +  M
) ) )
2724, 26oveq12d 6300 . . . . 5  |-  ( a  =  M  ->  (
( ( ! `  n )  x.  (
( n  +  1 ) ^ a ) )  /  ( ! `
 ( n  +  a ) ) )  =  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^ M ) )  / 
( ! `  (
n  +  M ) ) ) )
2827mpteq2dv 4534 . . . 4  |-  ( a  =  M  ->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ a ) )  /  ( ! `
 ( n  +  a ) ) ) )  =  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ M ) )  /  ( ! `  ( n  +  M
) ) ) ) )
2928breq1d 4457 . . 3  |-  ( a  =  M  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ a
) )  /  ( ! `  ( n  +  a ) ) ) )  ~~>  1  <->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ M ) )  /  ( ! `
 ( n  +  M ) ) ) )  ~~>  1 ) )
30 nnuz 11113 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
31 1z 10890 . . . . . 6  |-  1  e.  ZZ
3231a1i 11 . . . . 5  |-  ( T. 
->  1  e.  ZZ )
33 nnex 10538 . . . . . . 7  |-  NN  e.  _V
3433mptex 6129 . . . . . 6  |-  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ 0 ) )  /  ( ! `  ( n  +  0
) ) ) )  e.  _V
3534a1i 11 . . . . 5  |-  ( T. 
->  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ 0 ) )  /  ( ! `  ( n  +  0 ) ) ) )  e.  _V )
36 ax-1cn 9546 . . . . . 6  |-  1  e.  CC
3736a1i 11 . . . . 5  |-  ( T. 
->  1  e.  CC )
38 fveq2 5864 . . . . . . . . . 10  |-  ( n  =  m  ->  ( ! `  n )  =  ( ! `  m ) )
39 oveq1 6289 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
n  +  1 )  =  ( m  + 
1 ) )
4039oveq1d 6297 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( n  +  1 ) ^ 0 )  =  ( ( m  +  1 ) ^
0 ) )
4138, 40oveq12d 6300 . . . . . . . . 9  |-  ( n  =  m  ->  (
( ! `  n
)  x.  ( ( n  +  1 ) ^ 0 ) )  =  ( ( ! `
 m )  x.  ( ( m  + 
1 ) ^ 0 ) ) )
42 oveq1 6289 . . . . . . . . . 10  |-  ( n  =  m  ->  (
n  +  0 )  =  ( m  + 
0 ) )
4342fveq2d 5868 . . . . . . . . 9  |-  ( n  =  m  ->  ( ! `  ( n  +  0 ) )  =  ( ! `  ( m  +  0
) ) )
4441, 43oveq12d 6300 . . . . . . . 8  |-  ( n  =  m  ->  (
( ( ! `  n )  x.  (
( n  +  1 ) ^ 0 ) )  /  ( ! `
 ( n  + 
0 ) ) )  =  ( ( ( ! `  m )  x.  ( ( m  +  1 ) ^
0 ) )  / 
( ! `  (
m  +  0 ) ) ) )
45 eqid 2467 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ 0 ) )  /  ( ! `  ( n  +  0
) ) ) )  =  ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
0 ) )  / 
( ! `  (
n  +  0 ) ) ) )
46 ovex 6307 . . . . . . . 8  |-  ( ( ( ! `  m
)  x.  ( ( m  +  1 ) ^ 0 ) )  /  ( ! `  ( m  +  0
) ) )  e. 
_V
4744, 45, 46fvmpt 5948 . . . . . . 7  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ 0 ) )  /  ( ! `  ( n  +  0 ) ) ) ) `  m
)  =  ( ( ( ! `  m
)  x.  ( ( m  +  1 ) ^ 0 ) )  /  ( ! `  ( m  +  0
) ) ) )
48 peano2nn 10544 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
4948nncnd 10548 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  CC )
5049exp0d 12268 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( m  +  1 ) ^ 0 )  =  1 )
5150oveq2d 6298 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
( ! `  m
)  x.  ( ( m  +  1 ) ^ 0 ) )  =  ( ( ! `
 m )  x.  1 ) )
52 nnnn0 10798 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  NN0 )
53 faccl 12327 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ! `
 m )  e.  NN )
5452, 53syl 16 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  ( ! `  m )  e.  NN )
5554nncnd 10548 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  ( ! `  m )  e.  CC )
5655mulid1d 9609 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
( ! `  m
)  x.  1 )  =  ( ! `  m ) )
5751, 56eqtrd 2508 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( ! `  m
)  x.  ( ( m  +  1 ) ^ 0 ) )  =  ( ! `  m ) )
58 nncn 10540 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  m  e.  CC )
5958addid1d 9775 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
m  +  0 )  =  m )
6059fveq2d 5868 . . . . . . . . 9  |-  ( m  e.  NN  ->  ( ! `  ( m  +  0 ) )  =  ( ! `  m ) )
6157, 60oveq12d 6300 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( ( ! `  m )  x.  (
( m  +  1 ) ^ 0 ) )  /  ( ! `
 ( m  + 
0 ) ) )  =  ( ( ! `
 m )  / 
( ! `  m
) ) )
6254nnne0d 10576 . . . . . . . . 9  |-  ( m  e.  NN  ->  ( ! `  m )  =/=  0 )
6355, 62dividd 10314 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( ! `  m
)  /  ( ! `
 m ) )  =  1 )
6461, 63eqtrd 2508 . . . . . . 7  |-  ( m  e.  NN  ->  (
( ( ! `  m )  x.  (
( m  +  1 ) ^ 0 ) )  /  ( ! `
 ( m  + 
0 ) ) )  =  1 )
6547, 64eqtrd 2508 . . . . . 6  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ 0 ) )  /  ( ! `  ( n  +  0 ) ) ) ) `  m
)  =  1 )
6665adantl 466 . . . . 5  |-  ( ( T.  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ 0 ) )  /  ( ! `  ( n  +  0 ) ) ) ) `  m
)  =  1 )
6730, 32, 35, 37, 66climconst 13325 . . . 4  |-  ( T. 
->  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ 0 ) )  /  ( ! `  ( n  +  0 ) ) ) )  ~~>  1 )
6867trud 1388 . . 3  |-  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ 0 ) )  /  ( ! `  ( n  +  0
) ) ) )  ~~>  1
6931a1i 11 . . . . . 6  |-  ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  -> 
1  e.  ZZ )
70 simpr 461 . . . . . 6  |-  ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  -> 
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )
7133mptex 6129 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ ( m  + 
1 ) ) )  /  ( ! `  ( n  +  (
m  +  1 ) ) ) ) )  e.  _V
7271a1i 11 . . . . . 6  |-  ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  -> 
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ (
m  +  1 ) ) )  /  ( ! `  ( n  +  ( m  + 
1 ) ) ) ) )  e.  _V )
7331a1i 11 . . . . . . . 8  |-  ( m  e.  NN0  ->  1  e.  ZZ )
7436a1i 11 . . . . . . . 8  |-  ( m  e.  NN0  ->  1  e.  CC )
75 nn0p1nn 10831 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  NN )
7675nnzd 10961 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  ZZ )
7733mptex 6129 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( n  +  1 )  /  ( n  +  ( m  +  1
) ) ) )  e.  _V
7877a1i 11 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( n  e.  NN  |->  ( ( n  +  1 )  /  ( n  +  ( m  +  1
) ) ) )  e.  _V )
79 oveq1 6289 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
80 oveq1 6289 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
n  +  ( m  +  1 ) )  =  ( k  +  ( m  +  1 ) ) )
8179, 80oveq12d 6300 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( n  +  1 )  /  ( n  +  ( m  + 
1 ) ) )  =  ( ( k  +  1 )  / 
( k  +  ( m  +  1 ) ) ) )
82 eqid 2467 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( ( n  +  1 )  /  ( n  +  ( m  +  1
) ) ) )  =  ( n  e.  NN  |->  ( ( n  +  1 )  / 
( n  +  ( m  +  1 ) ) ) )
83 ovex 6307 . . . . . . . . . 10  |-  ( ( k  +  1 )  /  ( k  +  ( m  +  1 ) ) )  e. 
_V
8481, 82, 83fvmpt 5948 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( n  + 
1 )  /  (
n  +  ( m  +  1 ) ) ) ) `  k
)  =  ( ( k  +  1 )  /  ( k  +  ( m  +  1 ) ) ) )
8584adantl 466 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( n  +  1 )  / 
( n  +  ( m  +  1 ) ) ) ) `  k )  =  ( ( k  +  1 )  /  ( k  +  ( m  + 
1 ) ) ) )
8630, 73, 74, 76, 78, 85divcnvlin 28595 . . . . . . 7  |-  ( m  e.  NN0  ->  ( n  e.  NN  |->  ( ( n  +  1 )  /  ( n  +  ( m  +  1
) ) ) )  ~~>  1 )
8786adantr 465 . . . . . 6  |-  ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  -> 
( n  e.  NN  |->  ( ( n  + 
1 )  /  (
n  +  ( m  +  1 ) ) ) )  ~~>  1 )
88 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  n  e.  NN )
8988nnnn0d 10848 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  n  e.  NN0 )
90 faccl 12327 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  ->  ( ! `
 n )  e.  NN )
9189, 90syl 16 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ! `  n
)  e.  NN )
92 peano2nn 10544 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
93 nnexpcl 12143 . . . . . . . . . . . . . . 15  |-  ( ( ( n  +  1 )  e.  NN  /\  m  e.  NN0 )  -> 
( ( n  + 
1 ) ^ m
)  e.  NN )
9492, 93sylan 471 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  m  e.  NN0 )  -> 
( ( n  + 
1 ) ^ m
)  e.  NN )
9594ancoms 453 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ( n  + 
1 ) ^ m
)  e.  NN )
9691, 95nnmulcld 10579 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ( ! `  n )  x.  (
( n  +  1 ) ^ m ) )  e.  NN )
9796nnred 10547 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ( ! `  n )  x.  (
( n  +  1 ) ^ m ) )  e.  RR )
98 nnnn0addcl 10822 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  m  e.  NN0 )  -> 
( n  +  m
)  e.  NN )
9998ancoms 453 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( n  +  m
)  e.  NN )
10099nnnn0d 10848 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( n  +  m
)  e.  NN0 )
101 faccl 12327 . . . . . . . . . . . 12  |-  ( ( n  +  m )  e.  NN0  ->  ( ! `
 ( n  +  m ) )  e.  NN )
102100, 101syl 16 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ! `  (
n  +  m ) )  e.  NN )
10397, 102nndivred 10580 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) )  e.  RR )
104103recnd 9618 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) )  e.  CC )
105 eqid 2467 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ m ) )  /  ( ! `  ( n  +  m
) ) ) )  =  ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
m ) )  / 
( ! `  (
n  +  m ) ) ) )
106104, 105fmptd 6043 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ m ) )  /  ( ! `  ( n  +  m
) ) ) ) : NN --> CC )
107106ffvelrnda 6019 . . . . . . 7  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
m ) )  / 
( ! `  (
n  +  m ) ) ) ) `  k )  e.  CC )
108107adantlr 714 . . . . . 6  |-  ( ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
m ) )  / 
( ! `  (
n  +  m ) ) ) ) `  k )  e.  CC )
10992adantl 466 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
110109nnred 10547 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( n  +  1 )  e.  RR )
11175adantr 465 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( m  +  1 )  e.  NN )
11288, 111nnaddcld 10578 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( n  +  ( m  +  1 ) )  e.  NN )
113110, 112nndivred 10580 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ( n  + 
1 )  /  (
n  +  ( m  +  1 ) ) )  e.  RR )
114113recnd 9618 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  n  e.  NN )  ->  ( ( n  + 
1 )  /  (
n  +  ( m  +  1 ) ) )  e.  CC )
115114, 82fmptd 6043 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( n  e.  NN  |->  ( ( n  +  1 )  /  ( n  +  ( m  +  1
) ) ) ) : NN --> CC )
116115ffvelrnda 6019 . . . . . . 7  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( n  +  1 )  / 
( n  +  ( m  +  1 ) ) ) ) `  k )  e.  CC )
117116adantlr 714 . . . . . 6  |-  ( ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( n  +  1 )  / 
( n  +  ( m  +  1 ) ) ) ) `  k )  e.  CC )
118 peano2nn 10544 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
119118adantl 466 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
120119nncnd 10548 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( k  +  1 )  e.  CC )
121 simpl 457 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  m  e.  NN0 )
122120, 121expp1d 12275 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( k  +  1 ) ^ (
m  +  1 ) )  =  ( ( ( k  +  1 ) ^ m )  x.  ( k  +  1 ) ) )
123122oveq2d 6298 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ! `  k )  x.  (
( k  +  1 ) ^ ( m  +  1 ) ) )  =  ( ( ! `  k )  x.  ( ( ( k  +  1 ) ^ m )  x.  ( k  +  1 ) ) ) )
124 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  k  e.  NN )
125124nnnn0d 10848 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  k  e.  NN0 )
126 faccl 12327 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
127125, 126syl 16 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ! `  k
)  e.  NN )
128127nncnd 10548 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ! `  k
)  e.  CC )
129 nnexpcl 12143 . . . . . . . . . . . . . . 15  |-  ( ( ( k  +  1 )  e.  NN  /\  m  e.  NN0 )  -> 
( ( k  +  1 ) ^ m
)  e.  NN )
130118, 129sylan 471 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  m  e.  NN0 )  -> 
( ( k  +  1 ) ^ m
)  e.  NN )
131130ancoms 453 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( k  +  1 ) ^ m
)  e.  NN )
132131nncnd 10548 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( k  +  1 ) ^ m
)  e.  CC )
133128, 132, 120mulassd 9615 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ( ! `
 k )  x.  ( ( k  +  1 ) ^ m
) )  x.  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( ( ( k  +  1 ) ^ m )  x.  ( k  +  1 ) ) ) )
134123, 133eqtr4d 2511 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ! `  k )  x.  (
( k  +  1 ) ^ ( m  +  1 ) ) )  =  ( ( ( ! `  k
)  x.  ( ( k  +  1 ) ^ m ) )  x.  ( k  +  1 ) ) )
135125, 121nn0addcld 10852 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( k  +  m
)  e.  NN0 )
136 facp1 12322 . . . . . . . . . . . 12  |-  ( ( k  +  m )  e.  NN0  ->  ( ! `
 ( ( k  +  m )  +  1 ) )  =  ( ( ! `  ( k  +  m
) )  x.  (
( k  +  m
)  +  1 ) ) )
137135, 136syl 16 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ! `  (
( k  +  m
)  +  1 ) )  =  ( ( ! `  ( k  +  m ) )  x.  ( ( k  +  m )  +  1 ) ) )
138124nncnd 10548 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  k  e.  CC )
139121nn0cnd 10850 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  m  e.  CC )
14036a1i 11 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  1  e.  CC )
141138, 139, 140addassd 9614 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( k  +  m )  +  1 )  =  ( k  +  ( m  + 
1 ) ) )
142141fveq2d 5868 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ! `  (
( k  +  m
)  +  1 ) )  =  ( ! `
 ( k  +  ( m  +  1 ) ) ) )
143141oveq2d 6298 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ! `  ( k  +  m
) )  x.  (
( k  +  m
)  +  1 ) )  =  ( ( ! `  ( k  +  m ) )  x.  ( k  +  ( m  +  1 ) ) ) )
144137, 142, 1433eqtr3d 2516 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ! `  (
k  +  ( m  +  1 ) ) )  =  ( ( ! `  ( k  +  m ) )  x.  ( k  +  ( m  +  1 ) ) ) )
145134, 144oveq12d 6300 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ( ! `
 k )  x.  ( ( k  +  1 ) ^ (
m  +  1 ) ) )  /  ( ! `  ( k  +  ( m  + 
1 ) ) ) )  =  ( ( ( ( ! `  k )  x.  (
( k  +  1 ) ^ m ) )  x.  ( k  +  1 ) )  /  ( ( ! `
 ( k  +  m ) )  x.  ( k  +  ( m  +  1 ) ) ) ) )
146127, 131nnmulcld 10579 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ! `  k )  x.  (
( k  +  1 ) ^ m ) )  e.  NN )
147146nncnd 10548 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ! `  k )  x.  (
( k  +  1 ) ^ m ) )  e.  CC )
148 faccl 12327 . . . . . . . . . . . 12  |-  ( ( k  +  m )  e.  NN0  ->  ( ! `
 ( k  +  m ) )  e.  NN )
149135, 148syl 16 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ! `  (
k  +  m ) )  e.  NN )
150149nncnd 10548 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ! `  (
k  +  m ) )  e.  CC )
15175adantr 465 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( m  +  1 )  e.  NN )
152124, 151nnaddcld 10578 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( k  +  ( m  +  1 ) )  e.  NN )
153152nncnd 10548 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( k  +  ( m  +  1 ) )  e.  CC )
154149nnne0d 10576 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ! `  (
k  +  m ) )  =/=  0 )
155152nnne0d 10576 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( k  +  ( m  +  1 ) )  =/=  0 )
156147, 150, 120, 153, 154, 155divmuldivd 10357 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ( ( ! `  k )  x.  ( ( k  +  1 ) ^
m ) )  / 
( ! `  (
k  +  m ) ) )  x.  (
( k  +  1 )  /  ( k  +  ( m  + 
1 ) ) ) )  =  ( ( ( ( ! `  k )  x.  (
( k  +  1 ) ^ m ) )  x.  ( k  +  1 ) )  /  ( ( ! `
 ( k  +  m ) )  x.  ( k  +  ( m  +  1 ) ) ) ) )
157145, 156eqtr4d 2511 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ( ! `
 k )  x.  ( ( k  +  1 ) ^ (
m  +  1 ) ) )  /  ( ! `  ( k  +  ( m  + 
1 ) ) ) )  =  ( ( ( ( ! `  k )  x.  (
( k  +  1 ) ^ m ) )  /  ( ! `
 ( k  +  m ) ) )  x.  ( ( k  +  1 )  / 
( k  +  ( m  +  1 ) ) ) ) )
158 fveq2 5864 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
15979oveq1d 6297 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( n  +  1 ) ^ ( m  +  1 ) )  =  ( ( k  +  1 ) ^
( m  +  1 ) ) )
160158, 159oveq12d 6300 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( ! `  n
)  x.  ( ( n  +  1 ) ^ ( m  + 
1 ) ) )  =  ( ( ! `
 k )  x.  ( ( k  +  1 ) ^ (
m  +  1 ) ) ) )
16180fveq2d 5868 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( ! `  ( n  +  ( m  + 
1 ) ) )  =  ( ! `  ( k  +  ( m  +  1 ) ) ) )
162160, 161oveq12d 6300 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( ( ! `  n )  x.  (
( n  +  1 ) ^ ( m  +  1 ) ) )  /  ( ! `
 ( n  +  ( m  +  1
) ) ) )  =  ( ( ( ! `  k )  x.  ( ( k  +  1 ) ^
( m  +  1 ) ) )  / 
( ! `  (
k  +  ( m  +  1 ) ) ) ) )
163 eqid 2467 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ ( m  + 
1 ) ) )  /  ( ! `  ( n  +  (
m  +  1 ) ) ) ) )  =  ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
( m  +  1 ) ) )  / 
( ! `  (
n  +  ( m  +  1 ) ) ) ) )
164 ovex 6307 . . . . . . . . . 10  |-  ( ( ( ! `  k
)  x.  ( ( k  +  1 ) ^ ( m  + 
1 ) ) )  /  ( ! `  ( k  +  ( m  +  1 ) ) ) )  e. 
_V
165162, 163, 164fvmpt 5948 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ (
m  +  1 ) ) )  /  ( ! `  ( n  +  ( m  + 
1 ) ) ) ) ) `  k
)  =  ( ( ( ! `  k
)  x.  ( ( k  +  1 ) ^ ( m  + 
1 ) ) )  /  ( ! `  ( k  +  ( m  +  1 ) ) ) ) )
166165adantl 466 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
( m  +  1 ) ) )  / 
( ! `  (
n  +  ( m  +  1 ) ) ) ) ) `  k )  =  ( ( ( ! `  k )  x.  (
( k  +  1 ) ^ ( m  +  1 ) ) )  /  ( ! `
 ( k  +  ( m  +  1 ) ) ) ) )
16779oveq1d 6297 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( n  +  1 ) ^ m )  =  ( ( k  +  1 ) ^
m ) )
168158, 167oveq12d 6300 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( ! `  n
)  x.  ( ( n  +  1 ) ^ m ) )  =  ( ( ! `
 k )  x.  ( ( k  +  1 ) ^ m
) ) )
169 oveq1 6289 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
n  +  m )  =  ( k  +  m ) )
170169fveq2d 5868 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( ! `  ( n  +  m ) )  =  ( ! `  (
k  +  m ) ) )
171168, 170oveq12d 6300 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( ( ! `  n )  x.  (
( n  +  1 ) ^ m ) )  /  ( ! `
 ( n  +  m ) ) )  =  ( ( ( ! `  k )  x.  ( ( k  +  1 ) ^
m ) )  / 
( ! `  (
k  +  m ) ) ) )
172 ovex 6307 . . . . . . . . . . 11  |-  ( ( ( ! `  k
)  x.  ( ( k  +  1 ) ^ m ) )  /  ( ! `  ( k  +  m
) ) )  e. 
_V
173171, 105, 172fvmpt 5948 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) ) `  k )  =  ( ( ( ! `  k )  x.  ( ( k  +  1 ) ^
m ) )  / 
( ! `  (
k  +  m ) ) ) )
174173, 84oveq12d 6300 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
m ) )  / 
( ! `  (
n  +  m ) ) ) ) `  k )  x.  (
( n  e.  NN  |->  ( ( n  + 
1 )  /  (
n  +  ( m  +  1 ) ) ) ) `  k
) )  =  ( ( ( ( ! `
 k )  x.  ( ( k  +  1 ) ^ m
) )  /  ( ! `  ( k  +  m ) ) )  x.  ( ( k  +  1 )  / 
( k  +  ( m  +  1 ) ) ) ) )
175174adantl 466 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ m ) )  /  ( ! `  ( n  +  m
) ) ) ) `
 k )  x.  ( ( n  e.  NN  |->  ( ( n  +  1 )  / 
( n  +  ( m  +  1 ) ) ) ) `  k ) )  =  ( ( ( ( ! `  k )  x.  ( ( k  +  1 ) ^
m ) )  / 
( ! `  (
k  +  m ) ) )  x.  (
( k  +  1 )  /  ( k  +  ( m  + 
1 ) ) ) ) )
176157, 166, 1753eqtr4d 2518 . . . . . . 7  |-  ( ( m  e.  NN0  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
( m  +  1 ) ) )  / 
( ! `  (
n  +  ( m  +  1 ) ) ) ) ) `  k )  =  ( ( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
m ) )  / 
( ! `  (
n  +  m ) ) ) ) `  k )  x.  (
( n  e.  NN  |->  ( ( n  + 
1 )  /  (
n  +  ( m  +  1 ) ) ) ) `  k
) ) )
177176adantlr 714 . . . . . 6  |-  ( ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
( m  +  1 ) ) )  / 
( ! `  (
n  +  ( m  +  1 ) ) ) ) ) `  k )  =  ( ( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  ( ( n  +  1 ) ^
m ) )  / 
( ! `  (
n  +  m ) ) ) ) `  k )  x.  (
( n  e.  NN  |->  ( ( n  + 
1 )  /  (
n  +  ( m  +  1 ) ) ) ) `  k
) ) )
17830, 69, 70, 72, 87, 108, 117, 177climmul 13414 . . . . 5  |-  ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  -> 
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ (
m  +  1 ) ) )  /  ( ! `  ( n  +  ( m  + 
1 ) ) ) ) )  ~~>  ( 1  x.  1 ) )
179 1t1e1 10679 . . . . 5  |-  ( 1  x.  1 )  =  1
180178, 179syl6breq 4486 . . . 4  |-  ( ( m  e.  NN0  /\  ( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ m
) )  /  ( ! `  ( n  +  m ) ) ) )  ~~>  1 )  -> 
( n  e.  NN  |->  ( ( ( ! `
 n )  x.  ( ( n  + 
1 ) ^ (
m  +  1 ) ) )  /  ( ! `  ( n  +  ( m  + 
1 ) ) ) ) )  ~~>  1 )
181180ex 434 . . 3  |-  ( m  e.  NN0  ->  ( ( n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ m ) )  /  ( ! `
 ( n  +  m ) ) ) )  ~~>  1  ->  (
n  e.  NN  |->  ( ( ( ! `  n )  x.  (
( n  +  1 ) ^ ( m  +  1 ) ) )  /  ( ! `
 ( n  +  ( m  +  1
) ) ) ) )  ~~>  1 ) )
1828, 15, 22, 29, 68, 181nn0ind 10953 . 2  |-  ( M  e.  NN0  ->  ( n  e.  NN  |->  ( ( ( ! `  n
)  x.  ( ( n  +  1 ) ^ M ) )  /  ( ! `  ( n  +  M
) ) ) )  ~~>  1 )
1831, 182syl5eqbr 4480 1  |-  ( M  e.  NN0  ->  F  ~~>  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379   T. wtru 1380    e. wcel 1767   _Vcvv 3113   class class class wbr 4447    |-> cmpt 4505   ` cfv 5586  (class class class)co 6282   CCcc 9486   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    / cdiv 10202   NNcn 10532   NN0cn0 10791   ZZcz 10860   ^cexp 12130   !cfa 12317    ~~> cli 13266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fl 11893  df-seq 12072  df-exp 12131  df-fac 12318  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-rlim 13271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator