MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd6 Structured version   Unicode version

Theorem faclbnd6 12075
Description: Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
Assertion
Ref Expression
faclbnd6  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M
) ) )

Proof of Theorem faclbnd6
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6099 . . . . . 6  |-  ( m  =  0  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
0 ) )
21oveq2d 6107 . . . . 5  |-  ( m  =  0  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ 0 ) ) )
3 oveq2 6099 . . . . . 6  |-  ( m  =  0  ->  ( N  +  m )  =  ( N  + 
0 ) )
43fveq2d 5695 . . . . 5  |-  ( m  =  0  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  0 ) ) )
52, 4breq12d 4305 . . . 4  |-  ( m  =  0  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ 0 ) )  <_  ( ! `  ( N  +  0 ) ) ) )
65imbi2d 316 . . 3  |-  ( m  =  0  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ 0 ) )  <_  ( ! `  ( N  +  0 ) ) ) ) )
7 oveq2 6099 . . . . . 6  |-  ( m  =  k  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
k ) )
87oveq2d 6107 . . . . 5  |-  ( m  =  k  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) ) )
9 oveq2 6099 . . . . . 6  |-  ( m  =  k  ->  ( N  +  m )  =  ( N  +  k ) )
109fveq2d 5695 . . . . 5  |-  ( m  =  k  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  k )
) )
118, 10breq12d 4305 . . . 4  |-  ( m  =  k  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) ) ) )
1211imbi2d 316 . . 3  |-  ( m  =  k  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) ) ) ) )
13 oveq2 6099 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
( k  +  1 ) ) )
1413oveq2d 6107 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) ) )
15 oveq2 6099 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  ( N  +  m )  =  ( N  +  ( k  +  1 ) ) )
1615fveq2d 5695 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  ( k  +  1 ) ) ) )
1714, 16breq12d 4305 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) )
1817imbi2d 316 . . 3  |-  ( m  =  ( k  +  1 )  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) ) )
19 oveq2 6099 . . . . . 6  |-  ( m  =  M  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^ M ) )
2019oveq2d 6107 . . . . 5  |-  ( m  =  M  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ M
) ) )
21 oveq2 6099 . . . . . 6  |-  ( m  =  M  ->  ( N  +  m )  =  ( N  +  M ) )
2221fveq2d 5695 . . . . 5  |-  ( m  =  M  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  M )
) )
2320, 22breq12d 4305 . . . 4  |-  ( m  =  M  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ M
) )  <_  ( ! `  ( N  +  M ) ) ) )
2423imbi2d 316 . . 3  |-  ( m  =  M  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ M
) )  <_  ( ! `  ( N  +  M ) ) ) ) )
25 faccl 12061 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2625nnred 10337 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
2726leidd 9906 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  <_ 
( ! `  N
) )
28 nn0cn 10589 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
29 peano2cn 9541 . . . . . . . 8  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
3028, 29syl 16 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
3130exp0d 12002 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 ) ^ 0 )  =  1 )
3231oveq2d 6107 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  =  ( ( ! `  N )  x.  1 ) )
3325nncnd 10338 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
3433mulid1d 9403 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  1 )  =  ( ! `  N
) )
3532, 34eqtrd 2475 . . . 4  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  =  ( ! `  N
) )
3628addid1d 9569 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  0 )  =  N )
3736fveq2d 5695 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
0 ) )  =  ( ! `  N
) )
3827, 35, 373brtr4d 4322 . . 3  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  <_ 
( ! `  ( N  +  0 ) ) )
3926adantr 465 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  N
)  e.  RR )
40 peano2nn0 10620 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
4140nn0red 10637 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  RR )
42 reexpcl 11882 . . . . . . . . . . . . 13  |-  ( ( ( N  +  1 )  e.  RR  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  RR )
4341, 42sylan 471 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  RR )
4439, 43remulcld 9414 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  e.  RR )
45 nnnn0 10586 . . . . . . . . . . . . . . 15  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  NN0 )
4645nn0ge0d 10639 . . . . . . . . . . . . . 14  |-  ( ( ! `  N )  e.  NN  ->  0  <_  ( ! `  N
) )
4725, 46syl 16 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
4847adantr 465 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ! `  N ) )
4941adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  RR )
50 simpr 461 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
5140nn0ge0d 10639 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  0  <_ 
( N  +  1 ) )
5251adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( N  +  1 ) )
5349, 50, 52expge0d 12026 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ( N  +  1 ) ^ k ) )
5439, 43, 48, 53mulge0d 9916 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) ) )
5544, 54jca 532 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) ) ) )
56 nn0addcl 10615 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  k )  e.  NN0 )
57 faccl 12061 . . . . . . . . . . . 12  |-  ( ( N  +  k )  e.  NN0  ->  ( ! `
 ( N  +  k ) )  e.  NN )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  k )
)  e.  NN )
5958nnred 10337 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  k )
)  e.  RR )
60 nn0re 10588 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
61 peano2nn0 10620 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
6261nn0red 10637 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
63 readdcl 9365 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( N  +  ( k  +  1 ) )  e.  RR )
6460, 62, 63syl2an 477 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  ( k  +  1 ) )  e.  RR )
6549, 52, 64jca31 534 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) )
6655, 59, 65jca31 534 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) ) )
6766adantr 465 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) ) )
68 simpr 461 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )
6936adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  0 )  =  N )
70 nn0ge0 10605 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  0  <_ 
k )
7170adantl 466 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  k )
72 nn0re 10588 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e.  RR )
7372adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  RR )
7460adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  RR )
75 0re 9386 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
76 leadd2 9808 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  k  e.  RR  /\  N  e.  RR )  ->  (
0  <_  k  <->  ( N  +  0 )  <_ 
( N  +  k ) ) )
7775, 76mp3an1 1301 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  N  e.  RR )  ->  ( 0  <_  k  <->  ( N  +  0 )  <_  ( N  +  k ) ) )
7873, 74, 77syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( 0  <_  k  <->  ( N  +  0 )  <_  ( N  +  k ) ) )
7971, 78mpbid 210 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  0 )  <_  ( N  +  k ) )
8069, 79eqbrtrrd 4314 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  <_  ( N  +  k ) )
8156nn0red 10637 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  k )  e.  RR )
82 1re 9385 . . . . . . . . . . . . . 14  |-  1  e.  RR
83 leadd1 9807 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  ( N  +  k
)  e.  RR  /\  1  e.  RR )  ->  ( N  <_  ( N  +  k )  <->  ( N  +  1 )  <_  ( ( N  +  k )  +  1 ) ) )
8482, 83mp3an3 1303 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  ( N  +  k
)  e.  RR )  ->  ( N  <_ 
( N  +  k )  <->  ( N  + 
1 )  <_  (
( N  +  k )  +  1 ) ) )
8574, 81, 84syl2anc 661 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  <_  ( N  +  k )  <->  ( N  +  1 )  <_  ( ( N  +  k )  +  1 ) ) )
8680, 85mpbid 210 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  <_  ( ( N  +  k )  +  1 ) )
87 nn0cn 10589 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
88 ax-1cn 9340 . . . . . . . . . . . . 13  |-  1  e.  CC
89 addass 9369 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9088, 89mp3an3 1303 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9128, 87, 90syl2an 477 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9286, 91breqtrd 4316 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )
9392adantr 465 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )
9468, 93jca 532 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) )  /\  ( N  + 
1 )  <_  ( N  +  ( k  +  1 ) ) ) )
95 lemul12a 10187 . . . . . . . 8  |-  ( ( ( ( ( ( ! `  N )  x.  ( ( N  +  1 ) ^
k ) )  e.  RR  /\  0  <_ 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) )  ->  ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) )  /\  ( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  <_  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) ) )
9667, 94, 95sylc 60 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  <_  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
97 expp1 11872 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  CC  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ (
k  +  1 ) )  =  ( ( ( N  +  1 ) ^ k )  x.  ( N  + 
1 ) ) )
9830, 97sylan 471 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ (
k  +  1 ) )  =  ( ( ( N  +  1 ) ^ k )  x.  ( N  + 
1 ) ) )
9998oveq2d 6107 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ! `  N )  x.  ( ( ( N  +  1 ) ^ k )  x.  ( N  +  1 ) ) ) )
10033adantr 465 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  N
)  e.  CC )
101 expcl 11883 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  CC  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  CC )
10230, 101sylan 471 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  CC )
10330adantr 465 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  CC )
104100, 102, 103mulassd 9409 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  =  ( ( ! `  N )  x.  ( ( ( N  +  1 ) ^ k )  x.  ( N  +  1 ) ) ) )
10599, 104eqtr4d 2478 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  x.  ( N  + 
1 ) ) )
106105adantr 465 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  x.  ( N  + 
1 ) ) )
107 facp1 12056 . . . . . . . . . 10  |-  ( ( N  +  k )  e.  NN0  ->  ( ! `
 ( ( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k
) )  x.  (
( N  +  k )  +  1 ) ) )
10856, 107syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( ( N  +  k )  +  1 ) ) )
10991fveq2d 5695 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
( N  +  k )  +  1 ) )  =  ( ! `
 ( N  +  ( k  +  1 ) ) ) )
11091oveq2d 6107 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  ( N  +  k
) )  x.  (
( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
111108, 109, 1103eqtr3d 2483 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  ( k  +  1 ) ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
112111adantr 465 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ! `  ( N  +  ( k  +  1 ) ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
11396, 106, 1123brtr4d 4322 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) )
114113ex 434 . . . . 5  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) )  ->  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) )
115114expcom 435 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) )  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  (
k  +  1 ) ) ) ) ) )
116115a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN0  ->  ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) ) )  -> 
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) ) )
1176, 12, 18, 24, 38, 116nn0ind 10738 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^ M ) )  <_ 
( ! `  ( N  +  M )
) ) )
118117impcom 430 1  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287    <_ cle 9419   NNcn 10322   NN0cn0 10579   ^cexp 11865   !cfa 12051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862  df-seq 11807  df-exp 11866  df-fac 12052
This theorem is referenced by:  eftlub  13393
  Copyright terms: Public domain W3C validator