MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd5 Structured version   Unicode version

Theorem faclbnd5 12340
Description: The factorial function grows faster than powers and exponentiations. If we consider  K and  M to be constants, the right-hand side of the inequality is a constant times 
N-factorial. (Contributed by NM, 24-Dec-2005.)
Assertion
Ref Expression
faclbnd5  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  M  e.  NN )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <  ( ( 2  x.  ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) ) )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd5
StepHypRef Expression
1 nn0re 10800 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
2 reexpcl 12147 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  K  e.  NN0 )  -> 
( N ^ K
)  e.  RR )
31, 2sylan 471 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  NN0 )  -> 
( N ^ K
)  e.  RR )
43ancoms 453 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( N ^ K
)  e.  RR )
5 nnre 10539 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  RR )
6 reexpcl 12147 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
75, 6sylan 471 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
8 remulcl 9573 . . . . . . 7  |-  ( ( ( N ^ K
)  e.  RR  /\  ( M ^ N )  e.  RR )  -> 
( ( N ^ K )  x.  ( M ^ N ) )  e.  RR )
94, 7, 8syl2an 477 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0 )  /\  ( M  e.  NN  /\  N  e.  NN0 )
)  ->  ( ( N ^ K )  x.  ( M ^ N
) )  e.  RR )
109anandirs 829 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( N ^ K )  x.  ( M ^ N
) )  e.  RR )
11 2nn 10689 . . . . . . . . . 10  |-  2  e.  NN
12 2nn0 10808 . . . . . . . . . . 11  |-  2  e.  NN0
13 nn0expcl 12144 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  2  e.  NN0 )  -> 
( K ^ 2 )  e.  NN0 )
1412, 13mpan2 671 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( K ^ 2 )  e. 
NN0 )
15 nnexpcl 12143 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  ( K ^ 2 )  e.  NN0 )  -> 
( 2 ^ ( K ^ 2 ) )  e.  NN )
1611, 14, 15sylancr 663 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2 ^ ( K ^
2 ) )  e.  NN )
17 nnnn0 10798 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  NN0 )
18 nn0addcl 10827 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  K  e.  NN0 )  -> 
( M  +  K
)  e.  NN0 )
1918ancoms 453 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  +  K
)  e.  NN0 )
2017, 19sylan2 474 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( M  +  K
)  e.  NN0 )
21 nnexpcl 12143 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  ( M  +  K
)  e.  NN0 )  ->  ( M ^ ( M  +  K )
)  e.  NN )
2220, 21sylan2 474 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  ( K  e.  NN0  /\  M  e.  NN ) )  ->  ( M ^ ( M  +  K ) )  e.  NN )
2322anabss7 819 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( M ^ ( M  +  K )
)  e.  NN )
24 nnmulcl 10555 . . . . . . . . 9  |-  ( ( ( 2 ^ ( K ^ 2 ) )  e.  NN  /\  ( M ^ ( M  +  K ) )  e.  NN )  ->  (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  e.  NN )
2516, 23, 24syl2an 477 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  ( K  e.  NN0  /\  M  e.  NN ) )  ->  ( (
2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  e.  NN )
2625anabss5 814 . . . . . . 7  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  NN )
2726nnred 10547 . . . . . 6  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  RR )
28 faccl 12327 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2928nnred 10547 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
30 remulcl 9573 . . . . . 6  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  RR  /\  ( ! `  N )  e.  RR )  ->  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) )  e.  RR )
3127, 29, 30syl2an 477 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  e.  RR )
32 2re 10601 . . . . . 6  |-  2  e.  RR
33 remulcl 9573 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
)  e.  RR )  ->  ( 2  x.  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
) )  e.  RR )
3432, 31, 33sylancr 663 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( 2  x.  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
) )  e.  RR )
35 faclbnd4 12339 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  M  e.  NN0 )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) )
3617, 35syl3an3 1263 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  M  e.  NN )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) )
37363coml 1203 . . . . . 6  |-  ( ( K  e.  NN0  /\  M  e.  NN  /\  N  e.  NN0 )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) )
38373expa 1196 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( N ^ K )  x.  ( M ^ N
) )  <_  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) )
39 1lt2 10698 . . . . . 6  |-  1  <  2
40 nnmulcl 10555 . . . . . . . . 9  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  NN  /\  ( ! `  N )  e.  NN )  ->  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) )  e.  NN )
4126, 28, 40syl2an 477 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  e.  NN )
4241nngt0d 10575 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  0  <  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) )
43 ltmulgt12 10399 . . . . . . . 8  |-  ( ( ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
)  e.  RR  /\  2  e.  RR  /\  0  <  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
) )  ->  (
1  <  2  <->  ( (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  <  (
2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) ) )
4432, 43mp3an2 1312 . . . . . . 7  |-  ( ( ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
)  e.  RR  /\  0  <  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) )  -> 
( 1  <  2  <->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) )  < 
( 2  x.  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) ) ) )
4531, 42, 44syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  <  2  <->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  <  (
2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) ) )
4639, 45mpbii 211 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  <  (
2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) )
4710, 31, 34, 38, 46lelttrd 9735 . . . 4  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( N ^ K )  x.  ( M ^ N
) )  <  (
2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) )
4826nncnd 10548 . . . . 5  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  CC )
4928nncnd 10548 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
50 2cn 10602 . . . . . 6  |-  2  e.  CC
51 mulass 9576 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  CC  /\  ( ! `  N )  e.  CC )  ->  (
( 2  x.  (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) ) )  x.  ( ! `  N ) )  =  ( 2  x.  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) ) )
5250, 51mp3an1 1311 . . . . 5  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  CC  /\  ( ! `  N )  e.  CC )  ->  (
( 2  x.  (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) ) )  x.  ( ! `  N ) )  =  ( 2  x.  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) ) )
5348, 49, 52syl2an 477 . . . 4  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( 2  x.  ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) ) )  x.  ( ! `  N
) )  =  ( 2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) )
5447, 53breqtrrd 4473 . . 3  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( N ^ K )  x.  ( M ^ N
) )  <  (
( 2  x.  (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) ) )  x.  ( ! `  N ) ) )
55543impa 1191 . 2  |-  ( ( K  e.  NN0  /\  M  e.  NN  /\  N  e.  NN0 )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <  ( ( 2  x.  ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) ) )  x.  ( ! `  N
) ) )
56553comr 1204 1  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  M  e.  NN )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <  ( ( 2  x.  ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) ) )  x.  ( ! `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625   NNcn 10532   2c2 10581   NN0cn0 10791   ^cexp 12130   !cfa 12317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-seq 12072  df-exp 12131  df-fac 12318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator