MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd5 Structured version   Unicode version

Theorem faclbnd5 12433
Description: The factorial function grows faster than powers and exponentiations. If we consider  K and  M to be constants, the right-hand side of the inequality is a constant times 
N-factorial. (Contributed by NM, 24-Dec-2005.)
Assertion
Ref Expression
faclbnd5  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  M  e.  NN )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <  ( ( 2  x.  ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) ) )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd5
StepHypRef Expression
1 nn0re 10829 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
2 reexpcl 12239 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  K  e.  NN0 )  -> 
( N ^ K
)  e.  RR )
31, 2sylan 473 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  NN0 )  -> 
( N ^ K
)  e.  RR )
43ancoms 454 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( N ^ K
)  e.  RR )
5 nnre 10567 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  RR )
6 reexpcl 12239 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
75, 6sylan 473 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
8 remulcl 9575 . . . . . . 7  |-  ( ( ( N ^ K
)  e.  RR  /\  ( M ^ N )  e.  RR )  -> 
( ( N ^ K )  x.  ( M ^ N ) )  e.  RR )
94, 7, 8syl2an 479 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0 )  /\  ( M  e.  NN  /\  N  e.  NN0 )
)  ->  ( ( N ^ K )  x.  ( M ^ N
) )  e.  RR )
109anandirs 838 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( N ^ K )  x.  ( M ^ N
) )  e.  RR )
11 2nn 10718 . . . . . . . . . 10  |-  2  e.  NN
12 nn0sqcl 12249 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( K ^ 2 )  e. 
NN0 )
13 nnexpcl 12235 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  ( K ^ 2 )  e.  NN0 )  -> 
( 2 ^ ( K ^ 2 ) )  e.  NN )
1411, 12, 13sylancr 667 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2 ^ ( K ^
2 ) )  e.  NN )
15 nnnn0 10827 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  NN0 )
16 nn0addcl 10856 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  K  e.  NN0 )  -> 
( M  +  K
)  e.  NN0 )
1716ancoms 454 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  +  K
)  e.  NN0 )
1815, 17sylan2 476 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( M  +  K
)  e.  NN0 )
19 nnexpcl 12235 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  ( M  +  K
)  e.  NN0 )  ->  ( M ^ ( M  +  K )
)  e.  NN )
2018, 19sylan2 476 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  ( K  e.  NN0  /\  M  e.  NN ) )  ->  ( M ^ ( M  +  K ) )  e.  NN )
2120anabss7 828 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( M ^ ( M  +  K )
)  e.  NN )
22 nnmulcl 10583 . . . . . . . . 9  |-  ( ( ( 2 ^ ( K ^ 2 ) )  e.  NN  /\  ( M ^ ( M  +  K ) )  e.  NN )  ->  (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  e.  NN )
2314, 21, 22syl2an 479 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  ( K  e.  NN0  /\  M  e.  NN ) )  ->  ( (
2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  e.  NN )
2423anabss5 823 . . . . . . 7  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  NN )
2524nnred 10575 . . . . . 6  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  RR )
26 faccl 12419 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2726nnred 10575 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
28 remulcl 9575 . . . . . 6  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  RR  /\  ( ! `  N )  e.  RR )  ->  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) )  e.  RR )
2925, 27, 28syl2an 479 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  e.  RR )
30 2re 10630 . . . . . 6  |-  2  e.  RR
31 remulcl 9575 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
)  e.  RR )  ->  ( 2  x.  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
) )  e.  RR )
3230, 29, 31sylancr 667 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( 2  x.  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
) )  e.  RR )
33 faclbnd4 12432 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  M  e.  NN0 )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) )
3415, 33syl3an3 1299 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  M  e.  NN )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) )
35343coml 1212 . . . . . 6  |-  ( ( K  e.  NN0  /\  M  e.  NN  /\  N  e.  NN0 )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) )
36353expa 1205 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( N ^ K )  x.  ( M ^ N
) )  <_  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) )
37 1lt2 10727 . . . . . 6  |-  1  <  2
38 nnmulcl 10583 . . . . . . . . 9  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  NN  /\  ( ! `  N )  e.  NN )  ->  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) )  e.  NN )
3924, 26, 38syl2an 479 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  e.  NN )
4039nngt0d 10604 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  0  <  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) )
41 ltmulgt12 10417 . . . . . . . 8  |-  ( ( ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
)  e.  RR  /\  2  e.  RR  /\  0  <  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
) )  ->  (
1  <  2  <->  ( (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  <  (
2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) ) )
4230, 41mp3an2 1348 . . . . . . 7  |-  ( ( ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  N )
)  e.  RR  /\  0  <  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) )  -> 
( 1  <  2  <->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) )  < 
( 2  x.  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) ) ) )
4329, 40, 42syl2anc 665 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  <  2  <->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  <  (
2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) ) )
4437, 43mpbii 214 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) )  <  (
2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) )
4510, 29, 32, 36, 44lelttrd 9744 . . . 4  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( N ^ K )  x.  ( M ^ N
) )  <  (
2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) )
4624nncnd 10576 . . . . 5  |-  ( ( K  e.  NN0  /\  M  e.  NN )  ->  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  CC )
4726nncnd 10576 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
48 2cn 10631 . . . . . 6  |-  2  e.  CC
49 mulass 9578 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  CC  /\  ( ! `  N )  e.  CC )  ->  (
( 2  x.  (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) ) )  x.  ( ! `  N ) )  =  ( 2  x.  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) ) )
5048, 49mp3an1 1347 . . . . 5  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  e.  CC  /\  ( ! `  N )  e.  CC )  ->  (
( 2  x.  (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) ) )  x.  ( ! `  N ) )  =  ( 2  x.  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  N ) ) ) )
5146, 47, 50syl2an 479 . . . 4  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( 2  x.  ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) ) )  x.  ( ! `  N
) )  =  ( 2  x.  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  N
) ) ) )
5245, 51breqtrrd 4393 . . 3  |-  ( ( ( K  e.  NN0  /\  M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( N ^ K )  x.  ( M ^ N
) )  <  (
( 2  x.  (
( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) ) )  x.  ( ! `  N ) ) )
53523impa 1200 . 2  |-  ( ( K  e.  NN0  /\  M  e.  NN  /\  N  e.  NN0 )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <  ( ( 2  x.  ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) ) )  x.  ( ! `  N
) ) )
54533comr 1213 1  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  M  e.  NN )  ->  (
( N ^ K
)  x.  ( M ^ N ) )  <  ( ( 2  x.  ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) ) )  x.  ( ! `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   class class class wbr 4366   ` cfv 5544  (class class class)co 6249   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626    <_ cle 9627   NNcn 10560   2c2 10610   NN0cn0 10820   ^cexp 12222   !cfa 12409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-n0 10821  df-z 10889  df-uz 11111  df-rp 11254  df-seq 12164  df-exp 12223  df-fac 12410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator