MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem2 Structured version   Unicode version

Theorem faclbnd4lem2 12053
Description: Lemma for faclbnd4 12056. Use the weak deduction theorem to convert the hypotheses of faclbnd4lem1 12052 to antecedents. (Contributed by NM, 23-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem2  |-  ( ( M  e.  NN0  /\  K  e.  NN0  /\  N  e.  NN )  ->  (
( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  ->  (
( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) ) ) )

Proof of Theorem faclbnd4lem2
StepHypRef Expression
1 oveq1 6087 . . . . 5  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( M ^ ( N  -  1 ) )  =  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )
21oveq2d 6096 . . . 4  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  =  ( ( ( N  -  1 ) ^ K )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( N  -  1 ) ) ) )
3 id 22 . . . . . . 7  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  ->  M  =  if ( M  e.  NN0 ,  M ,  1 ) )
4 oveq1 6087 . . . . . . 7  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( M  +  K
)  =  ( if ( M  e.  NN0 ,  M ,  1 )  +  K ) )
53, 4oveq12d 6098 . . . . . 6  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( M ^ ( M  +  K )
)  =  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) )
65oveq2d 6096 . . . . 5  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  =  ( ( 2 ^ ( K ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) ) )
76oveq1d 6095 . . . 4  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  ( N  -  1 ) ) )  =  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) )  x.  ( ! `
 ( N  - 
1 ) ) ) )
82, 7breq12d 4293 . . 3  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  -  1 ) ) )  <_  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  <->  ( (
( N  -  1 ) ^ K )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) )  x.  ( ! `
 ( N  - 
1 ) ) ) ) )
9 oveq1 6087 . . . . 5  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( M ^ N
)  =  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )
109oveq2d 6096 . . . 4  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( N ^
( K  +  1 ) )  x.  ( M ^ N ) )  =  ( ( N ^ ( K  + 
1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) ) )
11 oveq1 6087 . . . . . . 7  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( M  +  ( K  +  1 ) )  =  ( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  + 
1 ) ) )
123, 11oveq12d 6098 . . . . . 6  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( M ^ ( M  +  ( K  +  1 ) ) )  =  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  + 
1 ) ) ) )
1312oveq2d 6096 . . . . 5  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  =  ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  +  1 ) ) ) ) )
1413oveq1d 6095 . . . 4  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( M ^ ( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N )
)  =  ( ( ( 2 ^ (
( K  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  + 
1 ) ) ) )  x.  ( ! `
 N ) ) )
1510, 14breq12d 4293 . . 3  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( ( N ^ ( K  + 
1 ) )  x.  ( M ^ N
) )  <_  (
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) )  <->  ( ( N ^ ( K  + 
1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  <_ 
( ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  +  1 ) ) ) )  x.  ( ! `  N ) ) ) )
168, 15imbi12d 320 . 2  |-  ( M  =  if ( M  e.  NN0 ,  M ,  1 )  -> 
( ( ( ( ( N  -  1 ) ^ K )  x.  ( M ^
( N  -  1 ) ) )  <_ 
( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  ( N  -  1 ) ) )  ->  ( ( N ^ ( K  + 
1 ) )  x.  ( M ^ N
) )  <_  (
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) ) )  <-> 
( ( ( ( N  -  1 ) ^ K )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( N  -  1 ) ) )  <_ 
( ( ( 2 ^ ( K ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  -> 
( ( N ^
( K  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  + 
1 ) ) ) )  x.  ( ! `
 N ) ) ) ) )
17 oveq2 6088 . . . . 5  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( N  - 
1 ) ^ K
)  =  ( ( N  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) ) )
1817oveq1d 6095 . . . 4  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( ( N  -  1 ) ^ K )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )  =  ( ( ( N  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) ) )
19 oveq1 6087 . . . . . . 7  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( K ^ 2 )  =  ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )
2019oveq2d 6096 . . . . . 6  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( 2 ^ ( K ^ 2 ) )  =  ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^
2 ) ) )
21 oveq2 6088 . . . . . . 7  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( if ( M  e.  NN0 ,  M ,  1 )  +  K )  =  ( if ( M  e. 
NN0 ,  M , 
1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) )
2221oveq2d 6096 . . . . . 6  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  K ) )  =  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e. 
NN0 ,  K , 
1 ) ) ) )
2320, 22oveq12d 6098 . . . . 5  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( 2 ^ ( K ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) )  =  ( ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) ) )
2423oveq1d 6095 . . . 4  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( ( 2 ^ ( K ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  =  ( ( ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( N  -  1 ) ) ) )
2518, 24breq12d 4293 . . 3  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( ( ( N  -  1 ) ^ K )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( N  -  1 ) ) )  <_ 
( ( ( 2 ^ ( K ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  <->  ( (
( N  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( N  -  1 ) ) ) ) )
26 oveq1 6087 . . . . . 6  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( K  +  1 )  =  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )
2726oveq2d 6096 . . . . 5  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( N ^ ( K  +  1 ) )  =  ( N ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) )
2827oveq1d 6095 . . . 4  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( N ^
( K  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  =  ( ( N ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) ) )
2926oveq1d 6095 . . . . . . 7  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( K  + 
1 ) ^ 2 )  =  ( ( if ( K  e. 
NN0 ,  K , 
1 )  +  1 ) ^ 2 ) )
3029oveq2d 6096 . . . . . 6  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( 2 ^ (
( K  +  1 ) ^ 2 ) )  =  ( 2 ^ ( ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ^
2 ) ) )
3126oveq2d 6096 . . . . . . 7  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  +  1 ) )  =  ( if ( M  e. 
NN0 ,  M , 
1 )  +  ( if ( K  e. 
NN0 ,  K , 
1 )  +  1 ) ) )
3231oveq2d 6096 . . . . . 6  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  +  1 ) ) )  =  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )
3330, 32oveq12d 6098 . . . . 5  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  + 
1 ) ) ) )  =  ( ( 2 ^ ( ( if ( K  e. 
NN0 ,  K , 
1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) ) )
3433oveq1d 6095 . . . 4  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  +  1 ) ) ) )  x.  ( ! `  N ) )  =  ( ( ( 2 ^ ( ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `
 N ) ) )
3528, 34breq12d 4293 . . 3  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( ( N ^ ( K  + 
1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  <_ 
( ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  +  1 ) ) ) )  x.  ( ! `  N ) )  <->  ( ( N ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  <_  ( ( ( 2 ^ ( ( if ( K  e. 
NN0 ,  K , 
1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `  N )
) ) )
3625, 35imbi12d 320 . 2  |-  ( K  =  if ( K  e.  NN0 ,  K ,  1 )  -> 
( ( ( ( ( N  -  1 ) ^ K )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  K ) ) )  x.  ( ! `
 ( N  - 
1 ) ) )  ->  ( ( N ^ ( K  + 
1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  <_ 
( ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( K  +  1 ) ) ) )  x.  ( ! `  N ) ) )  <-> 
( ( ( ( N  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( N  -  1 ) ) )  ->  ( ( N ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  <_  ( ( ( 2 ^ ( ( if ( K  e. 
NN0 ,  K , 
1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `  N )
) ) ) )
37 oveq1 6087 . . . . . 6  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( N  -  1 )  =  ( if ( N  e.  NN ,  N ,  1 )  -  1 ) )
3837oveq1d 6095 . . . . 5  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( N  - 
1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  =  ( ( if ( N  e.  NN ,  N , 
1 )  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) ) )
3937oveq2d 6096 . . . . 5  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( if ( M  e.  NN0 ,  M ,  1 ) ^
( N  -  1 ) )  =  ( if ( M  e. 
NN0 ,  M , 
1 ) ^ ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) )
4038, 39oveq12d 6098 . . . 4  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( ( N  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )  =  ( ( ( if ( N  e.  NN ,  N , 
1 )  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) ) )
4137fveq2d 5683 . . . . 5  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ! `  ( N  -  1 ) )  =  ( ! `
 ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) )
4241oveq2d 6096 . . . 4  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( N  -  1 ) ) )  =  ( ( ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) ) )
4340, 42breq12d 4293 . . 3  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( ( ( N  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( N  -  1 ) ) )  <->  ( ( ( if ( N  e.  NN ,  N , 
1 )  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) )  <_  ( (
( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) ) ) )
44 oveq1 6087 . . . . 5  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( N ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  =  ( if ( N  e.  NN ,  N ,  1 ) ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) )
45 oveq2 6088 . . . . 5  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( if ( M  e.  NN0 ,  M ,  1 ) ^ N )  =  ( if ( M  e. 
NN0 ,  M , 
1 ) ^ if ( N  e.  NN ,  N ,  1 ) ) )
4644, 45oveq12d 6098 . . . 4  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( N ^
( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  =  ( ( if ( N  e.  NN ,  N ,  1 ) ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ if ( N  e.  NN ,  N ,  1 ) ) ) )
47 fveq2 5679 . . . . 5  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ! `  N
)  =  ( ! `
 if ( N  e.  NN ,  N ,  1 ) ) )
4847oveq2d 6096 . . . 4  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( ( 2 ^ ( ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ^
2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^
( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `
 N ) )  =  ( ( ( 2 ^ ( ( if ( K  e. 
NN0 ,  K , 
1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `  if ( N  e.  NN ,  N ,  1 ) ) ) )
4946, 48breq12d 4293 . . 3  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( ( N ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  <_  ( ( ( 2 ^ ( ( if ( K  e. 
NN0 ,  K , 
1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `  N )
)  <->  ( ( if ( N  e.  NN ,  N ,  1 ) ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ if ( N  e.  NN ,  N ,  1 ) ) )  <_  ( (
( 2 ^ (
( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `  if ( N  e.  NN ,  N ,  1 ) ) ) ) )
5043, 49imbi12d 320 . 2  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( ( ( ( N  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( N  -  1 ) ) )  ->  ( ( N ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ N ) )  <_  ( ( ( 2 ^ ( ( if ( K  e. 
NN0 ,  K , 
1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `  N )
) )  <->  ( (
( ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) )  <_  ( (
( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) )  ->  ( ( if ( N  e.  NN ,  N ,  1 ) ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ if ( N  e.  NN ,  N ,  1 ) ) )  <_  ( (
( 2 ^ (
( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `  if ( N  e.  NN ,  N ,  1 ) ) ) ) ) )
51 1nn 10320 . . . 4  |-  1  e.  NN
5251elimel 3840 . . 3  |-  if ( N  e.  NN ,  N ,  1 )  e.  NN
53 1nn0 10582 . . . 4  |-  1  e.  NN0
5453elimel 3840 . . 3  |-  if ( K  e.  NN0 ,  K ,  1 )  e.  NN0
5553elimel 3840 . . 3  |-  if ( M  e.  NN0 ,  M ,  1 )  e.  NN0
5652, 54, 55faclbnd4lem1 12052 . 2  |-  ( ( ( ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ^ if ( K  e.  NN0 ,  K ,  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) )  <_  ( (
( 2 ^ ( if ( K  e.  NN0 ,  K ,  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  if ( K  e.  NN0 ,  K ,  1 ) ) ) )  x.  ( ! `  ( if ( N  e.  NN ,  N ,  1 )  -  1 ) ) )  ->  ( ( if ( N  e.  NN ,  N ,  1 ) ^ ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ if ( N  e.  NN ,  N ,  1 ) ) )  <_  ( (
( 2 ^ (
( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ^ 2 ) )  x.  ( if ( M  e.  NN0 ,  M ,  1 ) ^ ( if ( M  e.  NN0 ,  M ,  1 )  +  ( if ( K  e.  NN0 ,  K ,  1 )  +  1 ) ) ) )  x.  ( ! `  if ( N  e.  NN ,  N ,  1 ) ) ) )
5716, 36, 50, 56dedth3h 3831 1  |-  ( ( M  e.  NN0  /\  K  e.  NN0  /\  N  e.  NN )  ->  (
( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  ->  (
( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 958    = wceq 1362    e. wcel 1755   ifcif 3779   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   1c1 9270    + caddc 9272    x. cmul 9274    <_ cle 9406    - cmin 9582   NNcn 10309   2c2 10358   NN0cn0 10566   ^cexp 11848   !cfa 12034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-n0 10567  df-z 10634  df-uz 10849  df-rp 10979  df-seq 11790  df-exp 11849  df-fac 12035
This theorem is referenced by:  faclbnd4lem4  12055
  Copyright terms: Public domain W3C validator