MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd2 Structured version   Unicode version

Theorem faclbnd2 12343
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd2  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  <_ 
( ! `  N
) )

Proof of Theorem faclbnd2
StepHypRef Expression
1 sq2 12238 . . . . . 6  |-  ( 2 ^ 2 )  =  4
2 2t2e4 10686 . . . . . 6  |-  ( 2  x.  2 )  =  4
31, 2eqtr4i 2473 . . . . 5  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
43oveq2i 6288 . . . 4  |-  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  =  ( ( 2 ^ ( N  +  1 ) )  /  (
2  x.  2 ) )
5 2cn 10607 . . . . . 6  |-  2  e.  CC
6 expp1 12147 . . . . . 6  |-  ( ( 2  e.  CC  /\  N  e.  NN0 )  -> 
( 2 ^ ( N  +  1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
75, 6mpan 670 . . . . 5  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
87oveq1d 6292 . . . 4  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2  x.  2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
94, 8syl5eq 2494 . . 3  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
10 expcl 12158 . . . . 5  |-  ( ( 2  e.  CC  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  CC )
115, 10mpan 670 . . . 4  |-  ( N  e.  NN0  ->  ( 2 ^ N )  e.  CC )
12 2cnne0 10751 . . . . 5  |-  ( 2  e.  CC  /\  2  =/=  0 )
13 divmuldiv 10245 . . . . 5  |-  ( ( ( ( 2 ^ N )  e.  CC  /\  2  e.  CC )  /\  ( ( 2  e.  CC  /\  2  =/=  0 )  /\  (
2  e.  CC  /\  2  =/=  0 ) ) )  ->  ( (
( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
1412, 12, 13mpanr12 685 . . . 4  |-  ( ( ( 2 ^ N
)  e.  CC  /\  2  e.  CC )  ->  ( ( ( 2 ^ N )  / 
2 )  x.  (
2  /  2 ) )  =  ( ( ( 2 ^ N
)  x.  2 )  /  ( 2  x.  2 ) ) )
1511, 5, 14sylancl 662 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( ( 2 ^ N )  x.  2 )  /  (
2  x.  2 ) ) )
16 2div2e1 10659 . . . . 5  |-  ( 2  /  2 )  =  1
1716oveq2i 6288 . . . 4  |-  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( ( 2 ^ N )  / 
2 )  x.  1 )
1811halfcld 10784 . . . . 5  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  e.  CC )
1918mulid1d 9611 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  1 )  =  ( ( 2 ^ N )  /  2
) )
2017, 19syl5eq 2494 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  /  2 )  x.  ( 2  / 
2 ) )  =  ( ( 2 ^ N )  /  2
) )
219, 15, 203eqtr2rd 2489 . 2  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  =  ( ( 2 ^ ( N  +  1 ) )  /  (
2 ^ 2 ) ) )
22 2nn0 10813 . . . 4  |-  2  e.  NN0
23 faclbnd 12342 . . . 4  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2 ^ ( N  +  1 ) )  <_  ( (
2 ^ 2 )  x.  ( ! `  N ) ) )
2422, 23mpan 670 . . 3  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  <_ 
( ( 2 ^ 2 )  x.  ( ! `  N )
) )
25 2re 10606 . . . . 5  |-  2  e.  RR
26 peano2nn0 10837 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
27 reexpcl 12157 . . . . 5  |-  ( ( 2  e.  RR  /\  ( N  +  1
)  e.  NN0 )  ->  ( 2 ^ ( N  +  1 ) )  e.  RR )
2825, 26, 27sylancr 663 . . . 4  |-  ( N  e.  NN0  ->  ( 2 ^ ( N  + 
1 ) )  e.  RR )
29 faccl 12337 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3029nnred 10552 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
31 4re 10613 . . . . . . 7  |-  4  e.  RR
321, 31eqeltri 2525 . . . . . 6  |-  ( 2 ^ 2 )  e.  RR
33 4pos 10632 . . . . . . 7  |-  0  <  4
3433, 1breqtrri 4458 . . . . . 6  |-  0  <  ( 2 ^ 2 )
3532, 34pm3.2i 455 . . . . 5  |-  ( ( 2 ^ 2 )  e.  RR  /\  0  <  ( 2 ^ 2 ) )
36 ledivmul 10419 . . . . 5  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  RR  /\  ( ! `  N )  e.  RR  /\  (
( 2 ^ 2 )  e.  RR  /\  0  <  ( 2 ^ 2 ) ) )  ->  ( ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_ 
( ! `  N
)  <->  ( 2 ^ ( N  +  1 ) )  <_  (
( 2 ^ 2 )  x.  ( ! `
 N ) ) ) )
3735, 36mp3an3 1312 . . . 4  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( ( 2 ^ ( N  + 
1 ) )  / 
( 2 ^ 2 ) )  <_  ( ! `  N )  <->  ( 2 ^ ( N  +  1 ) )  <_  ( ( 2 ^ 2 )  x.  ( ! `  N
) ) ) )
3828, 30, 37syl2anc 661 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_  ( ! `  N )  <->  ( 2 ^ ( N  + 
1 ) )  <_ 
( ( 2 ^ 2 )  x.  ( ! `  N )
) ) )
3924, 38mpbird 232 . 2  |-  ( N  e.  NN0  ->  ( ( 2 ^ ( N  +  1 ) )  /  ( 2 ^ 2 ) )  <_ 
( ! `  N
) )
4021, 39eqbrtrd 4453 1  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2 )  <_ 
( ! `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381    e. wcel 1802    =/= wne 2636   class class class wbr 4433   ` cfv 5574  (class class class)co 6277   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626    <_ cle 9627    / cdiv 10207   2c2 10586   4c4 10588   NN0cn0 10796   ^cexp 12140   !cfa 12327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-2nd 6782  df-recs 7040  df-rdg 7074  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-n0 10797  df-z 10866  df-uz 11086  df-rp 11225  df-seq 12082  df-exp 12141  df-fac 12328
This theorem is referenced by:  ege2le3  13698
  Copyright terms: Public domain W3C validator