MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facavg Structured version   Unicode version

Theorem facavg 12077
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) )

Proof of Theorem facavg
StepHypRef Expression
1 nn0addcl 10615 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
21nn0red 10637 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  RR )
32rehalfcld 10571 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  +  N )  /  2
)  e.  RR )
4 flle 11649 . . . . 5  |-  ( ( ( M  +  N
)  /  2 )  e.  RR  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
) )
53, 4syl 16 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  <_  ( ( M  +  N )  /  2 ) )
6 reflcl 11646 . . . . . 6  |-  ( ( ( M  +  N
)  /  2 )  e.  RR  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  e.  RR )
73, 6syl 16 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR )
8 nn0re 10588 . . . . . 6  |-  ( M  e.  NN0  ->  M  e.  RR )
98adantr 465 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
10 letr 9468 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR  /\  ( ( M  +  N )  /  2
)  e.  RR  /\  M  e.  RR )  ->  ( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  M )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M ) )
117, 3, 9, 10syl3anc 1218 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  M )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M ) )
125, 11mpand 675 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  ->  ( |_ `  (
( M  +  N
)  /  2 ) )  <_  M )
)
131nn0ge0d 10639 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  ( M  +  N ) )
14 halfnneg2 10556 . . . . . . 7  |-  ( ( M  +  N )  e.  RR  ->  (
0  <_  ( M  +  N )  <->  0  <_  ( ( M  +  N
)  /  2 ) ) )
152, 14syl 16 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <_  ( M  +  N )  <->  0  <_  ( ( M  +  N )  / 
2 ) ) )
1613, 15mpbid 210 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  ( ( M  +  N )  /  2 ) )
17 flge0nn0 11666 . . . . 5  |-  ( ( ( ( M  +  N )  /  2
)  e.  RR  /\  0  <_  ( ( M  +  N )  / 
2 ) )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0 )
183, 16, 17syl2anc 661 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0 )
19 simpl 457 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
20 facwordi 12065 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0  /\  M  e.  NN0  /\  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
) )
21203exp 1186 . . . 4  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( M  e.  NN0  ->  ( ( |_ `  ( ( M  +  N )  /  2 ) )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
) ) ) )
2218, 19, 21sylc 60 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( |_ `  ( ( M  +  N )  /  2
) )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ! `  M ) ) )
23 faccl 12061 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
2423nncnd 10338 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  CC )
2524mulid1d 9403 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( ! `  M )  x.  1 )  =  ( ! `  M
) )
2625adantr 465 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  1 )  =  ( ! `
 M ) )
27 faccl 12061 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2827nnred 10337 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
2928adantl 466 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  N
)  e.  RR )
3023nnred 10337 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  RR )
3123nnnn0d 10636 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( ! `
 M )  e. 
NN0 )
3231nn0ge0d 10639 . . . . . . . 8  |-  ( M  e.  NN0  ->  0  <_ 
( ! `  M
) )
3330, 32jca 532 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M
) ) )
3433adantr 465 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )
3527nnge1d 10364 . . . . . . 7  |-  ( N  e.  NN0  ->  1  <_ 
( ! `  N
) )
3635adantl 466 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
1  <_  ( ! `  N ) )
37 1re 9385 . . . . . . 7  |-  1  e.  RR
38 lemul2a 10184 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  ( ! `  N
)  e.  RR  /\  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )  /\  1  <_  ( ! `  N )
)  ->  ( ( ! `  M )  x.  1 )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )
3937, 38mp3anl1 1308 . . . . . 6  |-  ( ( ( ( ! `  N )  e.  RR  /\  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )  /\  1  <_  ( ! `  N )
)  ->  ( ( ! `  M )  x.  1 )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )
4029, 34, 36, 39syl21anc 1217 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  1 )  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
4126, 40eqbrtrrd 4314 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  M
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
42 faccl 12061 . . . . . . 7  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  e.  NN )
4318, 42syl 16 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  NN )
4443nnred 10337 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR )
4530adantr 465 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  M
)  e.  RR )
46 remulcl 9367 . . . . . 6  |-  ( ( ( ! `  M
)  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( ! `  M )  x.  ( ! `  N )
)  e.  RR )
4730, 28, 46syl2an 477 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  ( ! `  N )
)  e.  RR )
48 letr 9468 . . . . 5  |-  ( ( ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR  /\  ( ! `  M )  e.  RR  /\  ( ( ! `  M )  x.  ( ! `  N ) )  e.  RR )  ->  (
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  M )  /\  ( ! `  M )  <_  ( ( ! `  M )  x.  ( ! `  N )
) )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
4944, 45, 47, 48syl3anc 1218 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
)  /\  ( ! `  M )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )  ->  ( ! `  ( |_ `  (
( M  +  N
)  /  2 ) ) )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) ) )
5041, 49mpan2d 674 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  M )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
5112, 22, 503syld 55 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) ) )
52 nn0re 10588 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
5352adantl 466 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
54 letr 9468 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR  /\  ( ( M  +  N )  /  2
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  N )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N ) )
557, 3, 53, 54syl3anc 1218 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  N )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N ) )
565, 55mpand 675 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  N  ->  ( |_ `  (
( M  +  N
)  /  2 ) )  <_  N )
)
57 simpr 461 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
58 facwordi 12065 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0  /\  N  e.  NN0  /\  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
) )
59583exp 1186 . . . 4  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( N  e.  NN0  ->  ( ( |_ `  ( ( M  +  N )  /  2 ) )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
) ) ) )
6018, 57, 59sylc 60 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( |_ `  ( ( M  +  N )  /  2
) )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ! `  N ) ) )
6127nncnd 10338 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
6261mulid2d 9404 . . . . . 6  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
6362adantl 466 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  x.  ( ! `  N )
)  =  ( ! `
 N ) )
6427nnnn0d 10636 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e. 
NN0 )
6564nn0ge0d 10639 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
6628, 65jca 532 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N
) ) )
6766adantl 466 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )
6823nnge1d 10364 . . . . . . 7  |-  ( M  e.  NN0  ->  1  <_ 
( ! `  M
) )
6968adantr 465 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
1  <_  ( ! `  M ) )
70 lemul1a 10183 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  ( ! `  M
)  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )  /\  1  <_  ( ! `  M )
)  ->  ( 1  x.  ( ! `  N ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) )
7137, 70mp3anl1 1308 . . . . . 6  |-  ( ( ( ( ! `  M )  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )  /\  1  <_  ( ! `  M )
)  ->  ( 1  x.  ( ! `  N ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) )
7245, 67, 69, 71syl21anc 1217 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  x.  ( ! `  N )
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
7363, 72eqbrtrrd 4314 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  N
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
74 letr 9468 . . . . 5  |-  ( ( ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR  /\  ( ! `  N )  e.  RR  /\  ( ( ! `  M )  x.  ( ! `  N ) )  e.  RR )  ->  (
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  N )  /\  ( ! `  N )  <_  ( ( ! `  M )  x.  ( ! `  N )
) )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
7544, 29, 47, 74syl3anc 1218 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
)  /\  ( ! `  N )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )  ->  ( ! `  ( |_ `  (
( M  +  N
)  /  2 ) ) )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) ) )
7673, 75mpan2d 674 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  N )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
7756, 60, 763syld 55 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) ) )
78 avgle 10566 . . 3  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  +  N )  / 
2 )  <_  M  \/  ( ( M  +  N )  /  2
)  <_  N )
)
798, 52, 78syl2an 477 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  \/  ( ( M  +  N )  /  2
)  <_  N )
)
8051, 77, 79mpjaod 381 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287    <_ cle 9419    / cdiv 9993   NNcn 10322   2c2 10371   NN0cn0 10579   |_cfl 11640   !cfa 12051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-uz 10862  df-fl 11642  df-seq 11807  df-fac 12052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator