MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oweALT Structured version   Visualization version   Unicode version

Theorem f1oweALT 6803
Description: Alternate proof of f1owe 6268, more direct since not using the isomorphism predicate, but requiring ax-un 6609. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
f1oweALT.1  |-  R  =  { <. x ,  y
>.  |  ( F `  x ) S ( F `  y ) }
Assertion
Ref Expression
f1oweALT  |-  ( F : A -1-1-onto-> B  ->  ( S  We  B  ->  R  We  A ) )
Distinct variable groups:    x, y, S    x, F, y
Allowed substitution hints:    A( x, y)    B( x, y)    R( x, y)

Proof of Theorem f1oweALT
Dummy variables  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofo 5843 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
2 df-fo 5606 . . . . 5  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
3 freq2 4823 . . . . . . 7  |-  ( ran 
F  =  B  -> 
( S  Fr  ran  F  <-> 
S  Fr  B ) )
43biimprd 231 . . . . . 6  |-  ( ran 
F  =  B  -> 
( S  Fr  B  ->  S  Fr  ran  F
) )
5 df-fn 5603 . . . . . . 7  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
6 df-fr 4811 . . . . . . . . . . . . . . . . . . . 20  |-  ( S  Fr  ran  F  <->  A. w
( ( w  C_  ran  F  /\  w  =/=  (/) )  ->  E. u  e.  w  A. f  e.  w  -.  f S u ) )
7 vex 3059 . . . . . . . . . . . . . . . . . . . . . 22  |-  z  e. 
_V
87funimaex 5682 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Fun 
F  ->  ( F " z )  e.  _V )
9 n0 3752 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =/=  (/)  <->  E. w  w  e.  z )
10 funfvima2 6165 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( w  e.  z  ->  ( F `  w )  e.  ( F " z ) ) )
11 ne0i 3748 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F `  w )  e.  ( F "
z )  ->  ( F " z )  =/=  (/) )
1210, 11syl6 34 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( w  e.  z  ->  ( F "
z )  =/=  (/) ) )
1312exlimdv 1789 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( E. w  w  e.  z  ->  ( F " z )  =/=  (/) ) )
149, 13syl5bi 225 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( z  =/=  (/)  ->  ( F " z )  =/=  (/) ) )
1514imp 435 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( Fun  F  /\  z  C_  dom  F )  /\  z  =/=  (/) )  -> 
( F " z
)  =/=  (/) )
16 imassrn 5197 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F
" z )  C_  ran  F
1715, 16jctil 544 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( Fun  F  /\  z  C_  dom  F )  /\  z  =/=  (/) )  -> 
( ( F "
z )  C_  ran  F  /\  ( F "
z )  =/=  (/) ) )
18 sseq1 3464 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( F "
z )  ->  (
w  C_  ran  F  <->  ( F " z )  C_  ran  F ) )
19 neeq1 2697 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( F "
z )  ->  (
w  =/=  (/)  <->  ( F " z )  =/=  (/) ) )
2018, 19anbi12d 722 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( F "
z )  ->  (
( w  C_  ran  F  /\  w  =/=  (/) )  <->  ( ( F " z )  C_  ran  F  /\  ( F
" z )  =/=  (/) ) ) )
21 raleq 2998 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( F "
z )  ->  ( A. f  e.  w  -.  f S u  <->  A. f  e.  ( F " z
)  -.  f S u ) )
2221rexeqbi1dv 3007 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( F "
z )  ->  ( E. u  e.  w  A. f  e.  w  -.  f S u  <->  E. u  e.  ( F " z
) A. f  e.  ( F " z
)  -.  f S u ) )
2320, 22imbi12d 326 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( F "
z )  ->  (
( ( w  C_  ran  F  /\  w  =/=  (/) )  ->  E. u  e.  w  A. f  e.  w  -.  f S u )  <->  ( (
( F " z
)  C_  ran  F  /\  ( F " z )  =/=  (/) )  ->  E. u  e.  ( F " z
) A. f  e.  ( F " z
)  -.  f S u ) ) )
2423spcgv 3145 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F " z )  e.  _V  ->  ( A. w ( ( w 
C_  ran  F  /\  w  =/=  (/) )  ->  E. u  e.  w  A. f  e.  w  -.  f S u )  -> 
( ( ( F
" z )  C_  ran  F  /\  ( F
" z )  =/=  (/) )  ->  E. u  e.  ( F " z
) A. f  e.  ( F " z
)  -.  f S u ) ) )
2517, 24syl7 70 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F " z )  e.  _V  ->  ( A. w ( ( w 
C_  ran  F  /\  w  =/=  (/) )  ->  E. u  e.  w  A. f  e.  w  -.  f S u )  -> 
( ( ( Fun 
F  /\  z  C_  dom  F )  /\  z  =/=  (/) )  ->  E. u  e.  ( F " z
) A. f  e.  ( F " z
)  -.  f S u ) ) )
268, 25syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
F  ->  ( A. w ( ( w 
C_  ran  F  /\  w  =/=  (/) )  ->  E. u  e.  w  A. f  e.  w  -.  f S u )  -> 
( ( ( Fun 
F  /\  z  C_  dom  F )  /\  z  =/=  (/) )  ->  E. u  e.  ( F " z
) A. f  e.  ( F " z
)  -.  f S u ) ) )
276, 26syl5bi 225 . . . . . . . . . . . . . . . . . . 19  |-  ( Fun 
F  ->  ( S  Fr  ran  F  ->  (
( ( Fun  F  /\  z  C_  dom  F
)  /\  z  =/=  (/) )  ->  E. u  e.  ( F " z
) A. f  e.  ( F " z
)  -.  f S u ) ) )
2827com23 81 . . . . . . . . . . . . . . . . . 18  |-  ( Fun 
F  ->  ( (
( Fun  F  /\  z  C_  dom  F )  /\  z  =/=  (/) )  -> 
( S  Fr  ran  F  ->  E. u  e.  ( F " z ) A. f  e.  ( F " z )  -.  f S u ) ) )
2928expd 442 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
F  ->  ( ( Fun  F  /\  z  C_  dom  F )  ->  (
z  =/=  (/)  ->  ( S  Fr  ran  F  ->  E. u  e.  ( F " z ) A. f  e.  ( F " z )  -.  f S u ) ) ) )
3029anabsi5 831 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( z  =/=  (/)  ->  ( S  Fr  ran  F  ->  E. u  e.  ( F " z ) A. f  e.  ( F " z )  -.  f S u ) ) )
3130impd 437 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( ( z  =/=  (/)  /\  S  Fr  ran  F )  ->  E. u  e.  ( F " z
) A. f  e.  ( F " z
)  -.  f S u ) )
32 fores 5824 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( F  |`  z
) : z -onto-> ( F " z ) )
33 fvres 5901 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  z  ->  (
( F  |`  z
) `  v )  =  ( F `  v ) )
34 fvres 5901 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  z  ->  (
( F  |`  z
) `  w )  =  ( F `  w ) )
3533, 34breqan12rd 4432 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w  e.  z  /\  v  e.  z )  ->  ( ( ( F  |`  z ) `  v
) S ( ( F  |`  z ) `  w )  <->  ( F `  v ) S ( F `  w ) ) )
36 vex 3059 . . . . . . . . . . . . . . . . . . . . . 22  |-  v  e. 
_V
37 vex 3059 . . . . . . . . . . . . . . . . . . . . . 22  |-  w  e. 
_V
38 fveq2 5887 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  v  ->  ( F `  x )  =  ( F `  v ) )
3938breq1d 4425 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  v  ->  (
( F `  x
) S ( F `
 y )  <->  ( F `  v ) S ( F `  y ) ) )
40 fveq2 5887 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
4140breq2d 4427 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
( F `  v
) S ( F `
 y )  <->  ( F `  v ) S ( F `  w ) ) )
42 f1oweALT.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  R  =  { <. x ,  y
>.  |  ( F `  x ) S ( F `  y ) }
4336, 37, 39, 41, 42brab 4737 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v R w  <->  ( F `  v ) S ( F `  w ) )
4435, 43syl6rbbr 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( w  e.  z  /\  v  e.  z )  ->  ( v R w  <-> 
( ( F  |`  z ) `  v
) S ( ( F  |`  z ) `  w ) ) )
4544notbid 300 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  z  /\  v  e.  z )  ->  ( -.  v R w  <->  -.  ( ( F  |`  z ) `  v ) S ( ( F  |`  z
) `  w )
) )
4645ralbidva 2835 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  z  ->  ( A. v  e.  z  -.  v R w  <->  A. v  e.  z  -.  (
( F  |`  z
) `  v ) S ( ( F  |`  z ) `  w
) ) )
4746rexbiia 2899 . . . . . . . . . . . . . . . . 17  |-  ( E. w  e.  z  A. v  e.  z  -.  v R w  <->  E. w  e.  z  A. v  e.  z  -.  (
( F  |`  z
) `  v ) S ( ( F  |`  z ) `  w
) )
48 breq1 4418 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  |`  z
) `  v )  =  f  ->  ( ( ( F  |`  z
) `  v ) S ( ( F  |`  z ) `  w
)  <->  f S ( ( F  |`  z
) `  w )
) )
4948notbid 300 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  |`  z
) `  v )  =  f  ->  ( -.  ( ( F  |`  z ) `  v
) S ( ( F  |`  z ) `  w )  <->  -.  f S ( ( F  |`  z ) `  w
) ) )
5049cbvfo 6211 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  |`  z ) : z -onto-> ( F
" z )  -> 
( A. v  e.  z  -.  ( ( F  |`  z ) `  v ) S ( ( F  |`  z
) `  w )  <->  A. f  e.  ( F
" z )  -.  f S ( ( F  |`  z ) `  w ) ) )
5150rexbidv 2912 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  |`  z ) : z -onto-> ( F
" z )  -> 
( E. w  e.  z  A. v  e.  z  -.  ( ( F  |`  z ) `  v ) S ( ( F  |`  z
) `  w )  <->  E. w  e.  z  A. f  e.  ( F " z )  -.  f S ( ( F  |`  z ) `  w
) ) )
52 breq2 4419 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  |`  z
) `  w )  =  u  ->  ( f S ( ( F  |`  z ) `  w
)  <->  f S u ) )
5352notbid 300 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  |`  z
) `  w )  =  u  ->  ( -.  f S ( ( F  |`  z ) `  w )  <->  -.  f S u ) )
5453ralbidv 2838 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  |`  z
) `  w )  =  u  ->  ( A. f  e.  ( F " z )  -.  f S ( ( F  |`  z ) `  w
)  <->  A. f  e.  ( F " z )  -.  f S u ) )
5554cbvexfo 6212 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  |`  z ) : z -onto-> ( F
" z )  -> 
( E. w  e.  z  A. f  e.  ( F " z
)  -.  f S ( ( F  |`  z ) `  w
)  <->  E. u  e.  ( F " z ) A. f  e.  ( F " z )  -.  f S u ) )
5651, 55bitrd 261 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  z ) : z -onto-> ( F
" z )  -> 
( E. w  e.  z  A. v  e.  z  -.  ( ( F  |`  z ) `  v ) S ( ( F  |`  z
) `  w )  <->  E. u  e.  ( F
" z ) A. f  e.  ( F " z )  -.  f S u ) )
5747, 56syl5bb 265 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  z ) : z -onto-> ( F
" z )  -> 
( E. w  e.  z  A. v  e.  z  -.  v R w  <->  E. u  e.  ( F " z ) A. f  e.  ( F " z )  -.  f S u ) )
5832, 57syl 17 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( E. w  e.  z  A. v  e.  z  -.  v R w  <->  E. u  e.  ( F " z ) A. f  e.  ( F " z )  -.  f S u ) )
5931, 58sylibrd 242 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  z  C_ 
dom  F )  -> 
( ( z  =/=  (/)  /\  S  Fr  ran  F )  ->  E. w  e.  z  A. v  e.  z  -.  v R w ) )
6059exp4b 616 . . . . . . . . . . . . 13  |-  ( Fun 
F  ->  ( z  C_ 
dom  F  ->  ( z  =/=  (/)  ->  ( S  Fr  ran  F  ->  E. w  e.  z  A. v  e.  z  -.  v R w ) ) ) )
6160com34 86 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( z  C_ 
dom  F  ->  ( S  Fr  ran  F  -> 
( z  =/=  (/)  ->  E. w  e.  z  A. v  e.  z  -.  v R w ) ) ) )
6261com23 81 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( S  Fr  ran  F  ->  (
z  C_  dom  F  -> 
( z  =/=  (/)  ->  E. w  e.  z  A. v  e.  z  -.  v R w ) ) ) )
6362imp4a 598 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( S  Fr  ran  F  ->  (
( z  C_  dom  F  /\  z  =/=  (/) )  ->  E. w  e.  z  A. v  e.  z  -.  v R w ) ) )
6463alrimdv 1785 . . . . . . . . 9  |-  ( Fun 
F  ->  ( S  Fr  ran  F  ->  A. z
( ( z  C_  dom  F  /\  z  =/=  (/) )  ->  E. w  e.  z  A. v  e.  z  -.  v R w ) ) )
65 df-fr 4811 . . . . . . . . 9  |-  ( R  Fr  dom  F  <->  A. z
( ( z  C_  dom  F  /\  z  =/=  (/) )  ->  E. w  e.  z  A. v  e.  z  -.  v R w ) )
6664, 65syl6ibr 235 . . . . . . . 8  |-  ( Fun 
F  ->  ( S  Fr  ran  F  ->  R  Fr  dom  F ) )
67 freq2 4823 . . . . . . . . 9  |-  ( dom 
F  =  A  -> 
( R  Fr  dom  F  <-> 
R  Fr  A ) )
6867biimpd 212 . . . . . . . 8  |-  ( dom 
F  =  A  -> 
( R  Fr  dom  F  ->  R  Fr  A
) )
6966, 68sylan9 667 . . . . . . 7  |-  ( ( Fun  F  /\  dom  F  =  A )  -> 
( S  Fr  ran  F  ->  R  Fr  A
) )
705, 69sylbi 200 . . . . . 6  |-  ( F  Fn  A  ->  ( S  Fr  ran  F  ->  R  Fr  A )
)
714, 70sylan9r 668 . . . . 5  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  ( S  Fr  B  ->  R  Fr  A
) )
722, 71sylbi 200 . . . 4  |-  ( F : A -onto-> B  -> 
( S  Fr  B  ->  R  Fr  A ) )
731, 72syl 17 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( S  Fr  B  ->  R  Fr  A ) )
74 df-f1o 5607 . . . . 5  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
75 fveq2 5887 . . . . . . . . . . 11  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
7675breq1d 4425 . . . . . . . . . 10  |-  ( x  =  w  ->  (
( F `  x
) S ( F `
 y )  <->  ( F `  w ) S ( F `  y ) ) )
77 fveq2 5887 . . . . . . . . . . 11  |-  ( y  =  v  ->  ( F `  y )  =  ( F `  v ) )
7877breq2d 4427 . . . . . . . . . 10  |-  ( y  =  v  ->  (
( F `  w
) S ( F `
 y )  <->  ( F `  w ) S ( F `  v ) ) )
7937, 36, 76, 78, 42brab 4737 . . . . . . . . 9  |-  ( w R v  <->  ( F `  w ) S ( F `  v ) )
8079a1i 11 . . . . . . . 8  |-  ( ( F : A -1-1-> B  /\  ( w  e.  A  /\  v  e.  A
) )  ->  (
w R v  <->  ( F `  w ) S ( F `  v ) ) )
81 f1fveq 6187 . . . . . . . . 9  |-  ( ( F : A -1-1-> B  /\  ( w  e.  A  /\  v  e.  A
) )  ->  (
( F `  w
)  =  ( F `
 v )  <->  w  =  v ) )
8281bicomd 206 . . . . . . . 8  |-  ( ( F : A -1-1-> B  /\  ( w  e.  A  /\  v  e.  A
) )  ->  (
w  =  v  <->  ( F `  w )  =  ( F `  v ) ) )
8343a1i 11 . . . . . . . 8  |-  ( ( F : A -1-1-> B  /\  ( w  e.  A  /\  v  e.  A
) )  ->  (
v R w  <->  ( F `  v ) S ( F `  w ) ) )
8480, 82, 833orbi123d 1347 . . . . . . 7  |-  ( ( F : A -1-1-> B  /\  ( w  e.  A  /\  v  e.  A
) )  ->  (
( w R v  \/  w  =  v  \/  v R w )  <->  ( ( F `
 w ) S ( F `  v
)  \/  ( F `
 w )  =  ( F `  v
)  \/  ( F `
 v ) S ( F `  w
) ) ) )
85842ralbidva 2841 . . . . . 6  |-  ( F : A -1-1-> B  -> 
( A. w  e.  A  A. v  e.  A  ( w R v  \/  w  =  v  \/  v R w )  <->  A. w  e.  A  A. v  e.  A  ( ( F `  w ) S ( F `  v )  \/  ( F `  w )  =  ( F `  v )  \/  ( F `  v ) S ( F `  w ) ) ) )
86 breq1 4418 . . . . . . . . . 10  |-  ( ( F `  w )  =  u  ->  (
( F `  w
) S ( F `
 v )  <->  u S
( F `  v
) ) )
87 eqeq1 2465 . . . . . . . . . 10  |-  ( ( F `  w )  =  u  ->  (
( F `  w
)  =  ( F `
 v )  <->  u  =  ( F `  v ) ) )
88 breq2 4419 . . . . . . . . . 10  |-  ( ( F `  w )  =  u  ->  (
( F `  v
) S ( F `
 w )  <->  ( F `  v ) S u ) )
8986, 87, 883orbi123d 1347 . . . . . . . . 9  |-  ( ( F `  w )  =  u  ->  (
( ( F `  w ) S ( F `  v )  \/  ( F `  w )  =  ( F `  v )  \/  ( F `  v ) S ( F `  w ) )  <->  ( u S ( F `  v
)  \/  u  =  ( F `  v
)  \/  ( F `
 v ) S u ) ) )
9089ralbidv 2838 . . . . . . . 8  |-  ( ( F `  w )  =  u  ->  ( A. v  e.  A  ( ( F `  w ) S ( F `  v )  \/  ( F `  w )  =  ( F `  v )  \/  ( F `  v ) S ( F `  w ) )  <->  A. v  e.  A  ( u S ( F `  v )  \/  u  =  ( F `  v )  \/  ( F `  v ) S u ) ) )
9190cbvfo 6211 . . . . . . 7  |-  ( F : A -onto-> B  -> 
( A. w  e.  A  A. v  e.  A  ( ( F `
 w ) S ( F `  v
)  \/  ( F `
 w )  =  ( F `  v
)  \/  ( F `
 v ) S ( F `  w
) )  <->  A. u  e.  B  A. v  e.  A  ( u S ( F `  v )  \/  u  =  ( F `  v )  \/  ( F `  v ) S u ) ) )
92 breq2 4419 . . . . . . . . . 10  |-  ( ( F `  v )  =  f  ->  (
u S ( F `
 v )  <->  u S
f ) )
93 eqeq2 2472 . . . . . . . . . 10  |-  ( ( F `  v )  =  f  ->  (
u  =  ( F `
 v )  <->  u  =  f ) )
94 breq1 4418 . . . . . . . . . 10  |-  ( ( F `  v )  =  f  ->  (
( F `  v
) S u  <->  f S u ) )
9592, 93, 943orbi123d 1347 . . . . . . . . 9  |-  ( ( F `  v )  =  f  ->  (
( u S ( F `  v )  \/  u  =  ( F `  v )  \/  ( F `  v ) S u )  <->  ( u S f  \/  u  =  f  \/  f S u ) ) )
9695cbvfo 6211 . . . . . . . 8  |-  ( F : A -onto-> B  -> 
( A. v  e.  A  ( u S ( F `  v
)  \/  u  =  ( F `  v
)  \/  ( F `
 v ) S u )  <->  A. f  e.  B  ( u S f  \/  u  =  f  \/  f S u ) ) )
9796ralbidv 2838 . . . . . . 7  |-  ( F : A -onto-> B  -> 
( A. u  e.  B  A. v  e.  A  ( u S ( F `  v
)  \/  u  =  ( F `  v
)  \/  ( F `
 v ) S u )  <->  A. u  e.  B  A. f  e.  B  ( u S f  \/  u  =  f  \/  f S u ) ) )
9891, 97bitrd 261 . . . . . 6  |-  ( F : A -onto-> B  -> 
( A. w  e.  A  A. v  e.  A  ( ( F `
 w ) S ( F `  v
)  \/  ( F `
 w )  =  ( F `  v
)  \/  ( F `
 v ) S ( F `  w
) )  <->  A. u  e.  B  A. f  e.  B  ( u S f  \/  u  =  f  \/  f S u ) ) )
9985, 98sylan9bb 711 . . . . 5  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  ->  ( A. w  e.  A  A. v  e.  A  (
w R v  \/  w  =  v  \/  v R w )  <->  A. u  e.  B  A. f  e.  B  ( u S f  \/  u  =  f  \/  f S u ) ) )
10074, 99sylbi 200 . . . 4  |-  ( F : A -1-1-onto-> B  ->  ( A. w  e.  A  A. v  e.  A  (
w R v  \/  w  =  v  \/  v R w )  <->  A. u  e.  B  A. f  e.  B  ( u S f  \/  u  =  f  \/  f S u ) ) )
101100biimprd 231 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( A. u  e.  B  A. f  e.  B  (
u S f  \/  u  =  f  \/  f S u )  ->  A. w  e.  A  A. v  e.  A  ( w R v  \/  w  =  v  \/  v R w ) ) )
10273, 101anim12d 570 . 2  |-  ( F : A -1-1-onto-> B  ->  ( ( S  Fr  B  /\  A. u  e.  B  A. f  e.  B  (
u S f  \/  u  =  f  \/  f S u ) )  ->  ( R  Fr  A  /\  A. w  e.  A  A. v  e.  A  ( w R v  \/  w  =  v  \/  v R w ) ) ) )
103 dfwe2 6634 . 2  |-  ( S  We  B  <->  ( S  Fr  B  /\  A. u  e.  B  A. f  e.  B  ( u S f  \/  u  =  f  \/  f S u ) ) )
104 dfwe2 6634 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. w  e.  A  A. v  e.  A  ( w R v  \/  w  =  v  \/  v R w ) ) )
105102, 103, 1043imtr4g 278 1  |-  ( F : A -1-1-onto-> B  ->  ( S  We  B  ->  R  We  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    \/ w3o 990   A.wal 1452    = wceq 1454   E.wex 1673    e. wcel 1897    =/= wne 2632   A.wral 2748   E.wrex 2749   _Vcvv 3056    C_ wss 3415   (/)c0 3742   class class class wbr 4415   {copab 4473    Fr wfr 4808    We wwe 4810   dom cdm 4852   ran crn 4853    |` cres 4854   "cima 4855   Fun wfun 5594    Fn wfn 5595   -1-1->wf1 5597   -onto->wfo 5598   -1-1-onto->wf1o 5599   ` cfv 5600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator