MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdmvd Structured version   Unicode version

Theorem f1omvdmvd 16341
Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdmvd  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( F `  X )  e.  ( dom  ( F  \  _I  )  \  { X } ) )

Proof of Theorem f1omvdmvd
StepHypRef Expression
1 simpr 461 . . . . 5  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  X  e.  dom  ( F  \  _I  )
)
2 f1ofn 5823 . . . . . . 7  |-  ( F : A -1-1-onto-> A  ->  F  Fn  A )
32adantr 465 . . . . . 6  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  F  Fn  A
)
4 difss 3636 . . . . . . . . 9  |-  ( F 
\  _I  )  C_  F
5 dmss 5208 . . . . . . . . 9  |-  ( ( F  \  _I  )  C_  F  ->  dom  ( F 
\  _I  )  C_  dom  F )
64, 5ax-mp 5 . . . . . . . 8  |-  dom  ( F  \  _I  )  C_  dom  F
7 f1odm 5826 . . . . . . . 8  |-  ( F : A -1-1-onto-> A  ->  dom  F  =  A )
86, 7syl5sseq 3557 . . . . . . 7  |-  ( F : A -1-1-onto-> A  ->  dom  ( F 
\  _I  )  C_  A )
98sselda 3509 . . . . . 6  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  X  e.  A
)
10 fnelnfp 6102 . . . . . 6  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( X  e.  dom  ( F  \  _I  )  <->  ( F `  X )  =/=  X ) )
113, 9, 10syl2anc 661 . . . . 5  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( X  e. 
dom  ( F  \  _I  )  <->  ( F `  X )  =/=  X
) )
121, 11mpbid 210 . . . 4  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( F `  X )  =/=  X
)
13 f1of1 5821 . . . . . . 7  |-  ( F : A -1-1-onto-> A  ->  F : A -1-1-> A )
1413adantr 465 . . . . . 6  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  F : A -1-1-> A )
15 f1of 5822 . . . . . . . 8  |-  ( F : A -1-1-onto-> A  ->  F : A
--> A )
1615adantr 465 . . . . . . 7  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  F : A --> A )
1716, 9ffvelrnd 6033 . . . . . 6  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( F `  X )  e.  A
)
18 f1fveq 6169 . . . . . 6  |-  ( ( F : A -1-1-> A  /\  ( ( F `  X )  e.  A  /\  X  e.  A
) )  ->  (
( F `  ( F `  X )
)  =  ( F `
 X )  <->  ( F `  X )  =  X ) )
1914, 17, 9, 18syl12anc 1226 . . . . 5  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( ( F `
 ( F `  X ) )  =  ( F `  X
)  <->  ( F `  X )  =  X ) )
2019necon3bid 2725 . . . 4  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( ( F `
 ( F `  X ) )  =/=  ( F `  X
)  <->  ( F `  X )  =/=  X
) )
2112, 20mpbird 232 . . 3  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( F `  ( F `  X ) )  =/=  ( F `
 X ) )
22 fnelnfp 6102 . . . 4  |-  ( ( F  Fn  A  /\  ( F `  X )  e.  A )  -> 
( ( F `  X )  e.  dom  ( F  \  _I  )  <->  ( F `  ( F `
 X ) )  =/=  ( F `  X ) ) )
233, 17, 22syl2anc 661 . . 3  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( ( F `
 X )  e. 
dom  ( F  \  _I  )  <->  ( F `  ( F `  X ) )  =/=  ( F `
 X ) ) )
2421, 23mpbird 232 . 2  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( F `  X )  e.  dom  ( F  \  _I  )
)
25 eldifsn 4158 . 2  |-  ( ( F `  X )  e.  ( dom  ( F  \  _I  )  \  { X } )  <->  ( ( F `  X )  e.  dom  ( F  \  _I  )  /\  ( F `  X )  =/=  X ) )
2624, 12, 25sylanbrc 664 1  |-  ( ( F : A -1-1-onto-> A  /\  X  e.  dom  ( F 
\  _I  ) )  ->  ( F `  X )  e.  ( dom  ( F  \  _I  )  \  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662    \ cdif 3478    C_ wss 3481   {csn 4033    _I cid 4796   dom cdm 5005    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   -1-1-onto->wf1o 5593   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-f1o 5601  df-fv 5602
This theorem is referenced by:  f1otrspeq  16345  symggen  16368
  Copyright terms: Public domain W3C validator