MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco3 Structured version   Unicode version

Theorem f1omvdco3 16077
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco3  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( X  e.  dom  ( F 
\  _I  )  \/_  X  e.  dom  ( G 
\  _I  ) ) )  ->  X  e.  dom  ( ( F  o.  G )  \  _I  ) )

Proof of Theorem f1omvdco3
StepHypRef Expression
1 notbi 295 . . . . 5  |-  ( ( X  e.  dom  ( F  \  _I  )  <->  X  e.  dom  ( G  \  _I  ) )  <->  ( -.  X  e.  dom  ( F 
\  _I  )  <->  -.  X  e.  dom  ( G  \  _I  ) ) )
2 disjsn 4047 . . . . . . 7  |-  ( ( dom  ( F  \  _I  )  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  ( F 
\  _I  ) )
3 disj2 3837 . . . . . . 7  |-  ( ( dom  ( F  \  _I  )  i^i  { X } )  =  (/)  <->  dom  ( F  \  _I  )  C_  ( _V  \  { X } ) )
42, 3bitr3i 251 . . . . . 6  |-  ( -.  X  e.  dom  ( F  \  _I  )  <->  dom  ( F 
\  _I  )  C_  ( _V  \  { X } ) )
5 disjsn 4047 . . . . . . 7  |-  ( ( dom  ( G  \  _I  )  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  ( G 
\  _I  ) )
6 disj2 3837 . . . . . . 7  |-  ( ( dom  ( G  \  _I  )  i^i  { X } )  =  (/)  <->  dom  ( G  \  _I  )  C_  ( _V  \  { X } ) )
75, 6bitr3i 251 . . . . . 6  |-  ( -.  X  e.  dom  ( G  \  _I  )  <->  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) )
84, 7bibi12i 315 . . . . 5  |-  ( ( -.  X  e.  dom  ( F  \  _I  )  <->  -.  X  e.  dom  ( G  \  _I  ) )  <-> 
( dom  ( F  \  _I  )  C_  ( _V  \  { X }
)  <->  dom  ( G  \  _I  )  C_  ( _V 
\  { X }
) ) )
91, 8bitri 249 . . . 4  |-  ( ( X  e.  dom  ( F  \  _I  )  <->  X  e.  dom  ( G  \  _I  ) )  <->  ( dom  ( F  \  _I  )  C_  ( _V  \  { X } )  <->  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) ) )
109notbii 296 . . 3  |-  ( -.  ( X  e.  dom  ( F  \  _I  )  <->  X  e.  dom  ( G 
\  _I  ) )  <->  -.  ( dom  ( F 
\  _I  )  C_  ( _V  \  { X } )  <->  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) ) )
11 df-xor 1352 . . 3  |-  ( ( X  e.  dom  ( F  \  _I  )  \/_  X  e.  dom  ( G 
\  _I  ) )  <->  -.  ( X  e.  dom  ( F  \  _I  )  <->  X  e.  dom  ( G 
\  _I  ) ) )
12 df-xor 1352 . . 3  |-  ( ( dom  ( F  \  _I  )  C_  ( _V 
\  { X }
)  \/_  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) )  <->  -.  ( dom  ( F  \  _I  )  C_  ( _V  \  { X } )  <->  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) ) )
1310, 11, 123bitr4i 277 . 2  |-  ( ( X  e.  dom  ( F  \  _I  )  \/_  X  e.  dom  ( G 
\  _I  ) )  <-> 
( dom  ( F  \  _I  )  C_  ( _V  \  { X }
)  \/_  dom  ( G 
\  _I  )  C_  ( _V  \  { X } ) ) )
14 f1omvdco2 16076 . . 3  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( dom  ( F  \  _I  )  C_  ( _V  \  { X } )  \/_  dom  ( G  \  _I  )  C_  ( _V  \  { X } ) ) )  ->  -.  dom  (
( F  o.  G
)  \  _I  )  C_  ( _V  \  { X } ) )
15 disj2 3837 . . . . 5  |-  ( ( dom  ( ( F  o.  G )  \  _I  )  i^i  { X } )  =  (/)  <->  dom  ( ( F  o.  G )  \  _I  )  C_  ( _V  \  { X } ) )
16 disjsn 4047 . . . . 5  |-  ( ( dom  ( ( F  o.  G )  \  _I  )  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  ( ( F  o.  G ) 
\  _I  ) )
1715, 16bitr3i 251 . . . 4  |-  ( dom  ( ( F  o.  G )  \  _I  )  C_  ( _V  \  { X } )  <->  -.  X  e.  dom  ( ( F  o.  G )  \  _I  ) )
1817con2bii 332 . . 3  |-  ( X  e.  dom  ( ( F  o.  G ) 
\  _I  )  <->  -.  dom  (
( F  o.  G
)  \  _I  )  C_  ( _V  \  { X } ) )
1914, 18sylibr 212 . 2  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( dom  ( F  \  _I  )  C_  ( _V  \  { X } )  \/_  dom  ( G  \  _I  )  C_  ( _V  \  { X } ) ) )  ->  X  e.  dom  ( ( F  o.  G )  \  _I  ) )
2013, 19syl3an3b 1257 1  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( X  e.  dom  ( F 
\  _I  )  \/_  X  e.  dom  ( G 
\  _I  ) ) )  ->  X  e.  dom  ( ( F  o.  G )  \  _I  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ w3a 965    \/_ wxo 1351    = wceq 1370    e. wcel 1758   _Vcvv 3078    \ cdif 3436    i^i cin 3438    C_ wss 3439   (/)c0 3748   {csn 3988    _I cid 4742   dom cdm 4951    o. ccom 4955   -1-1-onto->wf1o 5528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-xor 1352  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537
This theorem is referenced by:  psgnunilem5  16122
  Copyright terms: Public domain W3C validator