MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco2 Structured version   Visualization version   Unicode version

Theorem f1omvdco2 17082
Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco2  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( dom  ( F  \  _I  )  C_  X  \/_  dom  ( G  \  _I  )  C_  X ) )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X )

Proof of Theorem f1omvdco2
StepHypRef Expression
1 excxor 1410 . . 3  |-  ( ( dom  ( F  \  _I  )  C_  X  \/_  dom  ( G  \  _I  )  C_  X )  <->  ( ( dom  ( F  \  _I  )  C_  X  /\  -.  dom  ( G  \  _I  )  C_  X )  \/  ( -.  dom  ( F  \  _I  )  C_  X  /\  dom  ( G 
\  _I  )  C_  X ) ) )
2 coass 5353 . . . . . . . . . . . 12  |-  ( ( `' F  o.  F
)  o.  G )  =  ( `' F  o.  ( F  o.  G
) )
3 f1ococnv1 5840 . . . . . . . . . . . . . 14  |-  ( F : A -1-1-onto-> A  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
43coeq1d 4995 . . . . . . . . . . . . 13  |-  ( F : A -1-1-onto-> A  ->  ( ( `' F  o.  F
)  o.  G )  =  ( (  _I  |`  A )  o.  G
) )
5 f1of 5812 . . . . . . . . . . . . . 14  |-  ( G : A -1-1-onto-> A  ->  G : A
--> A )
6 fcoi2 5756 . . . . . . . . . . . . . 14  |-  ( G : A --> A  -> 
( (  _I  |`  A )  o.  G )  =  G )
75, 6syl 17 . . . . . . . . . . . . 13  |-  ( G : A -1-1-onto-> A  ->  ( (  _I  |`  A )  o.  G )  =  G )
84, 7sylan9eq 2504 . . . . . . . . . . . 12  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( `' F  o.  F )  o.  G
)  =  G )
92, 8syl5eqr 2498 . . . . . . . . . . 11  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  ( `' F  o.  ( F  o.  G )
)  =  G )
109difeq1d 3549 . . . . . . . . . 10  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( `' F  o.  ( F  o.  G
) )  \  _I  )  =  ( G  \  _I  ) )
1110dmeqd 5036 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  dom  ( ( `' F  o.  ( F  o.  G
) )  \  _I  )  =  dom  ( G 
\  _I  ) )
1211adantr 467 . . . . . . . 8  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( `' F  o.  ( F  o.  G
) )  \  _I  )  =  dom  ( G 
\  _I  ) )
13 mvdco 17079 . . . . . . . . 9  |-  dom  (
( `' F  o.  ( F  o.  G
) )  \  _I  )  C_  ( dom  ( `' F  \  _I  )  u.  dom  ( ( F  o.  G )  \  _I  ) )
14 f1omvdcnv 17078 . . . . . . . . . . . 12  |-  ( F : A -1-1-onto-> A  ->  dom  ( `' F  \  _I  )  =  dom  ( F  \  _I  ) )
1514ad2antrr 731 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( `' F  \  _I  )  =  dom  ( F  \  _I  )
)
16 simprl 763 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( F  \  _I  )  C_  X )
1715, 16eqsstrd 3465 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( `' F  \  _I  )  C_  X )
18 simprr 765 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( F  o.  G )  \  _I  )  C_  X )
1917, 18unssd 3609 . . . . . . . . 9  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  -> 
( dom  ( `' F  \  _I  )  u. 
dom  ( ( F  o.  G )  \  _I  ) )  C_  X
)
2013, 19syl5ss 3442 . . . . . . . 8  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( `' F  o.  ( F  o.  G
) )  \  _I  )  C_  X )
2112, 20eqsstr3d 3466 . . . . . . 7  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( G  \  _I  )  C_  X )
2221expr 619 . . . . . 6  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  dom  ( F 
\  _I  )  C_  X )  ->  ( dom  ( ( F  o.  G )  \  _I  )  C_  X  ->  dom  ( G  \  _I  )  C_  X ) )
2322con3d 139 . . . . 5  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  dom  ( F 
\  _I  )  C_  X )  ->  ( -.  dom  ( G  \  _I  )  C_  X  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
2423expimpd 607 . . . 4  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( dom  ( F  \  _I  )  C_  X  /\  -.  dom  ( G 
\  _I  )  C_  X )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
25 coass 5353 . . . . . . . . . . . . 13  |-  ( ( F  o.  G )  o.  `' G )  =  ( F  o.  ( G  o.  `' G ) )
26 f1ococnv2 5838 . . . . . . . . . . . . . . 15  |-  ( G : A -1-1-onto-> A  ->  ( G  o.  `' G )  =  (  _I  |`  A )
)
2726coeq2d 4996 . . . . . . . . . . . . . 14  |-  ( G : A -1-1-onto-> A  ->  ( F  o.  ( G  o.  `' G ) )  =  ( F  o.  (  _I  |`  A ) ) )
28 f1of 5812 . . . . . . . . . . . . . . 15  |-  ( F : A -1-1-onto-> A  ->  F : A
--> A )
29 fcoi1 5755 . . . . . . . . . . . . . . 15  |-  ( F : A --> A  -> 
( F  o.  (  _I  |`  A ) )  =  F )
3028, 29syl 17 . . . . . . . . . . . . . 14  |-  ( F : A -1-1-onto-> A  ->  ( F  o.  (  _I  |`  A ) )  =  F )
3127, 30sylan9eqr 2506 . . . . . . . . . . . . 13  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  ( F  o.  ( G  o.  `' G ) )  =  F )
3225, 31syl5eq 2496 . . . . . . . . . . . 12  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( F  o.  G
)  o.  `' G
)  =  F )
3332difeq1d 3549 . . . . . . . . . . 11  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( ( F  o.  G )  o.  `' G )  \  _I  )  =  ( F  \  _I  ) )
3433dmeqd 5036 . . . . . . . . . 10  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  dom  ( ( ( F  o.  G )  o.  `' G )  \  _I  )  =  dom  ( F 
\  _I  ) )
3534adantr 467 . . . . . . . . 9  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( ( F  o.  G )  o.  `' G )  \  _I  )  =  dom  ( F 
\  _I  ) )
36 mvdco 17079 . . . . . . . . . 10  |-  dom  (
( ( F  o.  G )  o.  `' G )  \  _I  )  C_  ( dom  (
( F  o.  G
)  \  _I  )  u.  dom  ( `' G  \  _I  ) )
37 simprr 765 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( F  o.  G )  \  _I  )  C_  X )
38 f1omvdcnv 17078 . . . . . . . . . . . . 13  |-  ( G : A -1-1-onto-> A  ->  dom  ( `' G  \  _I  )  =  dom  ( G  \  _I  ) )
3938ad2antlr 732 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( `' G  \  _I  )  =  dom  ( G  \  _I  )
)
40 simprl 763 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( G  \  _I  )  C_  X )
4139, 40eqsstrd 3465 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( `' G  \  _I  )  C_  X )
4237, 41unssd 3609 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  -> 
( dom  ( ( F  o.  G )  \  _I  )  u.  dom  ( `' G  \  _I  ) )  C_  X
)
4336, 42syl5ss 3442 . . . . . . . . 9  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( ( F  o.  G )  o.  `' G )  \  _I  )  C_  X )
4435, 43eqsstr3d 3466 . . . . . . . 8  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( F  \  _I  )  C_  X )
4544expr 619 . . . . . . 7  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  dom  ( G 
\  _I  )  C_  X )  ->  ( dom  ( ( F  o.  G )  \  _I  )  C_  X  ->  dom  ( F  \  _I  )  C_  X ) )
4645con3d 139 . . . . . 6  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  dom  ( G 
\  _I  )  C_  X )  ->  ( -.  dom  ( F  \  _I  )  C_  X  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
4746expimpd 607 . . . . 5  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( dom  ( G  \  _I  )  C_  X  /\  -.  dom  ( F 
\  _I  )  C_  X )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
4847ancomsd 456 . . . 4  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( -.  dom  ( F  \  _I  )  C_  X  /\  dom  ( G 
\  _I  )  C_  X )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
4924, 48jaod 382 . . 3  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( ( dom  ( F  \  _I  )  C_  X  /\  -.  dom  ( G  \  _I  )  C_  X )  \/  ( -.  dom  ( F  \  _I  )  C_  X  /\  dom  ( G  \  _I  )  C_  X ) )  ->  -.  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )
501, 49syl5bi 221 . 2  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( dom  ( F  \  _I  )  C_  X  \/_  dom  ( G  \  _I  )  C_  X )  ->  -.  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )
51503impia 1204 1  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( dom  ( F  \  _I  )  C_  X  \/_  dom  ( G  \  _I  )  C_  X ) )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 370    /\ wa 371    /\ w3a 984    \/_ wxo 1404    = wceq 1443    \ cdif 3400    u. cun 3401    C_ wss 3403    _I cid 4743   `'ccnv 4832   dom cdm 4833    |` cres 4835    o. ccom 4837   -->wf 5577   -1-1-onto->wf1o 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-xor 1405  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-sbc 3267  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589
This theorem is referenced by:  f1omvdco3  17083
  Copyright terms: Public domain W3C validator