MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oiso Structured version   Unicode version

Theorem f1oiso 6248
Description: Any one-to-one onto function determines an isomorphism with an induced relation  S. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
f1oiso  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  H  Isom  R ,  S  ( A ,  B ) )
Distinct variable groups:    x, y,
z, w, A    x, B, y    x, H, y, z, w    x, R, y, z, w
Allowed substitution hints:    B( z, w)    S( x, y, z, w)

Proof of Theorem f1oiso
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  H : A -1-1-onto-> B
)
2 f1of1 5821 . . 3  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
3 df-br 4457 . . . . 5  |-  ( ( H `  v ) S ( H `  u )  <->  <. ( H `
 v ) ,  ( H `  u
) >.  e.  S )
4 eleq2 2530 . . . . . . 7  |-  ( S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) }  ->  (
<. ( H `  v
) ,  ( H `
 u ) >.  e.  S  <->  <. ( H `  v ) ,  ( H `  u )
>.  e.  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } ) )
5 fvex 5882 . . . . . . . . 9  |-  ( H `
 v )  e. 
_V
6 fvex 5882 . . . . . . . . 9  |-  ( H `
 u )  e. 
_V
7 eqeq1 2461 . . . . . . . . . . . 12  |-  ( z  =  ( H `  v )  ->  (
z  =  ( H `
 x )  <->  ( H `  v )  =  ( H `  x ) ) )
87anbi1d 704 . . . . . . . . . . 11  |-  ( z  =  ( H `  v )  ->  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  <->  ( ( H `
 v )  =  ( H `  x
)  /\  w  =  ( H `  y ) ) ) )
98anbi1d 704 . . . . . . . . . 10  |-  ( z  =  ( H `  v )  ->  (
( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y )  <->  ( (
( H `  v
)  =  ( H `
 x )  /\  w  =  ( H `  y ) )  /\  x R y ) ) )
1092rexbidv 2975 . . . . . . . . 9  |-  ( z  =  ( H `  v )  ->  ( E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y )  <->  E. x  e.  A  E. y  e.  A  ( (
( H `  v
)  =  ( H `
 x )  /\  w  =  ( H `  y ) )  /\  x R y ) ) )
11 eqeq1 2461 . . . . . . . . . . . 12  |-  ( w  =  ( H `  u )  ->  (
w  =  ( H `
 y )  <->  ( H `  u )  =  ( H `  y ) ) )
1211anbi2d 703 . . . . . . . . . . 11  |-  ( w  =  ( H `  u )  ->  (
( ( H `  v )  =  ( H `  x )  /\  w  =  ( H `  y ) )  <->  ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) ) ) )
1312anbi1d 704 . . . . . . . . . 10  |-  ( w  =  ( H `  u )  ->  (
( ( ( H `
 v )  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y )  <->  ( (
( H `  v
)  =  ( H `
 x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y ) ) )
14132rexbidv 2975 . . . . . . . . 9  |-  ( w  =  ( H `  u )  ->  ( E. x  e.  A  E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y )  <->  E. x  e.  A  E. y  e.  A  ( (
( H `  v
)  =  ( H `
 x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y ) ) )
155, 6, 10, 14opelopab 4778 . . . . . . . 8  |-  ( <.
( H `  v
) ,  ( H `
 u ) >.  e.  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) }  <->  E. x  e.  A  E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y ) )
16 anass 649 . . . . . . . . . . . . . . 15  |-  ( ( ( ( H `  v )  =  ( H `  x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  ( ( H `  v )  =  ( H `  x )  /\  (
( H `  u
)  =  ( H `
 y )  /\  x R y ) ) )
17 f1fveq 6171 . . . . . . . . . . . . . . . . . 18  |-  ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  x  e.  A
) )  ->  (
( H `  v
)  =  ( H `
 x )  <->  v  =  x ) )
18 equcom 1795 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  x  <->  x  =  v )
1917, 18syl6bb 261 . . . . . . . . . . . . . . . . 17  |-  ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  x  e.  A
) )  ->  (
( H `  v
)  =  ( H `
 x )  <->  x  =  v ) )
2019anassrs 648 . . . . . . . . . . . . . . . 16  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  (
( H `  v
)  =  ( H `
 x )  <->  x  =  v ) )
2120anbi1d 704 . . . . . . . . . . . . . . 15  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  (
( ( H `  v )  =  ( H `  x )  /\  ( ( H `
 u )  =  ( H `  y
)  /\  x R
y ) )  <->  ( x  =  v  /\  (
( H `  u
)  =  ( H `
 y )  /\  x R y ) ) ) )
2216, 21syl5bb 257 . . . . . . . . . . . . . 14  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  (
( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  ( x  =  v  /\  (
( H `  u
)  =  ( H `
 y )  /\  x R y ) ) ) )
2322rexbidv 2968 . . . . . . . . . . . . 13  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  ( E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  E. y  e.  A  ( x  =  v  /\  (
( H `  u
)  =  ( H `
 y )  /\  x R y ) ) ) )
24 r19.42v 3012 . . . . . . . . . . . . 13  |-  ( E. y  e.  A  ( x  =  v  /\  ( ( H `  u )  =  ( H `  y )  /\  x R y ) )  <->  ( x  =  v  /\  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y ) ) )
2523, 24syl6bb 261 . . . . . . . . . . . 12  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  ( E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  ( x  =  v  /\  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y ) ) ) )
2625rexbidva 2965 . . . . . . . . . . 11  |-  ( ( H : A -1-1-> B  /\  v  e.  A
)  ->  ( E. x  e.  A  E. y  e.  A  (
( ( H `  v )  =  ( H `  x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  E. x  e.  A  ( x  =  v  /\  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y ) ) ) )
27 breq1 4459 . . . . . . . . . . . . . . 15  |-  ( x  =  v  ->  (
x R y  <->  v R
y ) )
2827anbi2d 703 . . . . . . . . . . . . . 14  |-  ( x  =  v  ->  (
( ( H `  u )  =  ( H `  y )  /\  x R y )  <->  ( ( H `
 u )  =  ( H `  y
)  /\  v R
y ) ) )
2928rexbidv 2968 . . . . . . . . . . . . 13  |-  ( x  =  v  ->  ( E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y )  <->  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  v R y ) ) )
3029ceqsrexv 3233 . . . . . . . . . . . 12  |-  ( v  e.  A  ->  ( E. x  e.  A  ( x  =  v  /\  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y ) )  <->  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  v R y ) ) )
3130adantl 466 . . . . . . . . . . 11  |-  ( ( H : A -1-1-> B  /\  v  e.  A
)  ->  ( E. x  e.  A  (
x  =  v  /\  E. y  e.  A  ( ( H `  u
)  =  ( H `
 y )  /\  x R y ) )  <->  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  v R y ) ) )
3226, 31bitrd 253 . . . . . . . . . 10  |-  ( ( H : A -1-1-> B  /\  v  e.  A
)  ->  ( E. x  e.  A  E. y  e.  A  (
( ( H `  v )  =  ( H `  x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  v R y ) ) )
33 f1fveq 6171 . . . . . . . . . . . . . . 15  |-  ( ( H : A -1-1-> B  /\  ( u  e.  A  /\  y  e.  A
) )  ->  (
( H `  u
)  =  ( H `
 y )  <->  u  =  y ) )
34 equcom 1795 . . . . . . . . . . . . . . 15  |-  ( u  =  y  <->  y  =  u )
3533, 34syl6bb 261 . . . . . . . . . . . . . 14  |-  ( ( H : A -1-1-> B  /\  ( u  e.  A  /\  y  e.  A
) )  ->  (
( H `  u
)  =  ( H `
 y )  <->  y  =  u ) )
3635anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( H : A -1-1-> B  /\  u  e.  A
)  /\  y  e.  A )  ->  (
( H `  u
)  =  ( H `
 y )  <->  y  =  u ) )
3736anbi1d 704 . . . . . . . . . . . 12  |-  ( ( ( H : A -1-1-> B  /\  u  e.  A
)  /\  y  e.  A )  ->  (
( ( H `  u )  =  ( H `  y )  /\  v R y )  <->  ( y  =  u  /\  v R y ) ) )
3837rexbidva 2965 . . . . . . . . . . 11  |-  ( ( H : A -1-1-> B  /\  u  e.  A
)  ->  ( E. y  e.  A  (
( H `  u
)  =  ( H `
 y )  /\  v R y )  <->  E. y  e.  A  ( y  =  u  /\  v R y ) ) )
39 breq2 4460 . . . . . . . . . . . . 13  |-  ( y  =  u  ->  (
v R y  <->  v R u ) )
4039ceqsrexv 3233 . . . . . . . . . . . 12  |-  ( u  e.  A  ->  ( E. y  e.  A  ( y  =  u  /\  v R y )  <->  v R u ) )
4140adantl 466 . . . . . . . . . . 11  |-  ( ( H : A -1-1-> B  /\  u  e.  A
)  ->  ( E. y  e.  A  (
y  =  u  /\  v R y )  <->  v R u ) )
4238, 41bitrd 253 . . . . . . . . . 10  |-  ( ( H : A -1-1-> B  /\  u  e.  A
)  ->  ( E. y  e.  A  (
( H `  u
)  =  ( H `
 y )  /\  v R y )  <->  v R u ) )
4332, 42sylan9bb 699 . . . . . . . . 9  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  ( H : A -1-1-> B  /\  u  e.  A ) )  -> 
( E. x  e.  A  E. y  e.  A  ( ( ( H `  v )  =  ( H `  x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  v R u ) )
4443anandis 830 . . . . . . . 8  |-  ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  u  e.  A
) )  ->  ( E. x  e.  A  E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  v R u ) )
4515, 44syl5bb 257 . . . . . . 7  |-  ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  u  e.  A
) )  ->  ( <. ( H `  v
) ,  ( H `
 u ) >.  e.  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) }  <-> 
v R u ) )
464, 45sylan9bbr 700 . . . . . 6  |-  ( ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  u  e.  A ) )  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  ( <. ( H `  v ) ,  ( H `  u ) >.  e.  S  <->  v R u ) )
4746an32s 804 . . . . 5  |-  ( ( ( H : A -1-1-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y ) } )  /\  ( v  e.  A  /\  u  e.  A ) )  -> 
( <. ( H `  v ) ,  ( H `  u )
>.  e.  S  <->  v R u ) )
483, 47syl5rbb 258 . . . 4  |-  ( ( ( H : A -1-1-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y ) } )  /\  ( v  e.  A  /\  u  e.  A ) )  -> 
( v R u  <-> 
( H `  v
) S ( H `
 u ) ) )
4948ralrimivva 2878 . . 3  |-  ( ( H : A -1-1-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  A. v  e.  A  A. u  e.  A  ( v R u  <-> 
( H `  v
) S ( H `
 u ) ) )
502, 49sylan 471 . 2  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  A. v  e.  A  A. u  e.  A  ( v R u  <-> 
( H `  v
) S ( H `
 u ) ) )
51 df-isom 5603 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. v  e.  A  A. u  e.  A  ( v R u  <-> 
( H `  v
) S ( H `
 u ) ) ) )
521, 50, 51sylanbrc 664 1  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  H  Isom  R ,  S  ( A ,  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   <.cop 4038   class class class wbr 4456   {copab 4514   -1-1->wf1 5591   -1-1-onto->wf1o 5593   ` cfv 5594    Isom wiso 5595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-f1o 5601  df-fv 5602  df-isom 5603
This theorem is referenced by:  f1oiso2  6249  hartogslem1  7985  cnso  13991
  Copyright terms: Public domain W3C validator