MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq23 Structured version   Unicode version

Theorem f1oeq23 5810
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
Assertion
Ref Expression
f1oeq23  |-  ( ( A  =  B  /\  C  =  D )  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )

Proof of Theorem f1oeq23
StepHypRef Expression
1 f1oeq2 5808 . 2  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
2 f1oeq3 5809 . 2  |-  ( C  =  D  ->  ( F : B -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )
31, 2sylan9bb 699 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   -1-1-onto->wf1o 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-in 3483  df-ss 3490  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595
This theorem is referenced by:  enfixsn  7627  ackbij2lem2  8621  seqf1o  12117  eulerthlem2  14174  isgim  16124  symgval  16218  islmim  17520  fpwrelmapffs  27326  eldioph2lem1  30524
  Copyright terms: Public domain W3C validator