MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o2d Structured version   Unicode version

Theorem f1o2d 6511
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1o2d.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
f1o2d.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
f1o2d.4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
Assertion
Ref Expression
f1o2d  |-  ( ph  ->  F : A -1-1-onto-> B )
Distinct variable groups:    x, y, A    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)

Proof of Theorem f1o2d
StepHypRef Expression
1 f1od.1 . . 3  |-  F  =  ( x  e.  A  |->  C )
2 f1o2d.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
3 f1o2d.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
4 f1o2d.4 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
51, 2, 3, 4f1ocnv2d 6510 . 2  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
65simpld 459 1  |-  ( ph  ->  F : A -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    |-> cmpt 4505   `'ccnv 4998   -1-1-onto->wf1o 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595
This theorem is referenced by:  f1opw2  6512  en3d  7552  f1opwfi  7824  mapfien  7867  mapfienOLD  8138  fin23lem22  8707  incexclem  13611  grplmulf1o  15922  conjghm  16102  gapm  16149  psrbagconf1o  17825  hmeoimaf1o  20034  itg1mulc  21874  resinf1o  22684  eff1olem  22696  sqff1o  23212  dvdsflip  23214  dvdsppwf1o  23218  dvdsflf1o  23219  fcobij  27248  hashgcdlem  30790
  Copyright terms: Public domain W3C validator