MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o2d Structured version   Unicode version

Theorem f1o2d 6500
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1o2d.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
f1o2d.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
f1o2d.4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
Assertion
Ref Expression
f1o2d  |-  ( ph  ->  F : A -1-1-onto-> B )
Distinct variable groups:    x, y, A    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)

Proof of Theorem f1o2d
StepHypRef Expression
1 f1od.1 . . 3  |-  F  =  ( x  e.  A  |->  C )
2 f1o2d.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
3 f1o2d.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
4 f1o2d.4 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
51, 2, 3, 4f1ocnv2d 6499 . 2  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
65simpld 457 1  |-  ( ph  ->  F : A -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    |-> cmpt 4497   `'ccnv 4987   -1-1-onto->wf1o 5569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577
This theorem is referenced by:  f1opw2  6501  en3d  7545  f1opwfi  7816  mapfien  7859  mapfienOLD  8129  fin23lem22  8698  incexclem  13733  grplmulf1o  16314  conjghm  16499  gapm  16546  psrbagconf1o  18224  hmeoimaf1o  20440  itg1mulc  22280  resinf1o  23092  eff1olem  23104  sqff1o  23657  dvdsflip  23659  dvdsppwf1o  23663  dvdsflf1o  23664  fcobij  27782  hashgcdlem  31401
  Copyright terms: Public domain W3C validator