MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaeng Structured version   Unicode version

Theorem f1imaeng 7572
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
f1imaeng  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C
)  ~~  C )

Proof of Theorem f1imaeng
StepHypRef Expression
1 f1ores 5828 . . . 4  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
2 f1oeng 7531 . . . . 5  |-  ( ( C  e.  V  /\  ( F  |`  C ) : C -1-1-onto-> ( F " C
) )  ->  C  ~~  ( F " C
) )
32ancoms 453 . . . 4  |-  ( ( ( F  |`  C ) : C -1-1-onto-> ( F " C
)  /\  C  e.  V )  ->  C  ~~  ( F " C
) )
41, 3sylan 471 . . 3  |-  ( ( ( F : A -1-1-> B  /\  C  C_  A
)  /\  C  e.  V )  ->  C  ~~  ( F " C
) )
543impa 1191 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  C  ~~  ( F
" C ) )
65ensymd 7563 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C
)  ~~  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767    C_ wss 3476   class class class wbr 4447    |` cres 5001   "cima 5002   -1-1->wf1 5583   -1-1-onto->wf1o 5585    ~~ cen 7510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-er 7308  df-en 7514
This theorem is referenced by:  f1imaen  7574  ackbij1b  8615  enfin1ai  8760  isercolllem2  13447  pmtrfconj  16287  ballotlemro  28101
  Copyright terms: Public domain W3C validator