MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1elima Structured version   Unicode version

Theorem f1elima 6146
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1elima  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  X  e.  Y
) )

Proof of Theorem f1elima
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 f1fn 5764 . . . 4  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 fvelimab 5904 . . . 4  |-  ( ( F  Fn  A  /\  Y  C_  A )  -> 
( ( F `  X )  e.  ( F " Y )  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
31, 2sylan 469 . . 3  |-  ( ( F : A -1-1-> B  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
433adant2 1013 . 2  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
5 ssel 3483 . . . . . . . 8  |-  ( Y 
C_  A  ->  (
z  e.  Y  -> 
z  e.  A ) )
65impac 619 . . . . . . 7  |-  ( ( Y  C_  A  /\  z  e.  Y )  ->  ( z  e.  A  /\  z  e.  Y
) )
7 f1fveq 6145 . . . . . . . . . . . 12  |-  ( ( F : A -1-1-> B  /\  ( z  e.  A  /\  X  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  <->  z  =  X ) )
87ancom2s 800 . . . . . . . . . . 11  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  z  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  <->  z  =  X ) )
98biimpd 207 . . . . . . . . . 10  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  z  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  -> 
z  =  X ) )
109anassrs 646 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  z  e.  A )  ->  (
( F `  z
)  =  ( F `
 X )  -> 
z  =  X ) )
11 eleq1 2526 . . . . . . . . . 10  |-  ( z  =  X  ->  (
z  e.  Y  <->  X  e.  Y ) )
1211biimpcd 224 . . . . . . . . 9  |-  ( z  e.  Y  ->  (
z  =  X  ->  X  e.  Y )
)
1310, 12sylan9 655 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  X  e.  A )  /\  z  e.  A )  /\  z  e.  Y )  ->  (
( F `  z
)  =  ( F `
 X )  ->  X  e.  Y )
)
1413anasss 645 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  ( z  e.  A  /\  z  e.  Y ) )  -> 
( ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
156, 14sylan2 472 . . . . . 6  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  ( Y  C_  A  /\  z  e.  Y ) )  -> 
( ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
1615anassrs 646 . . . . 5  |-  ( ( ( ( F : A -1-1-> B  /\  X  e.  A )  /\  Y  C_  A )  /\  z  e.  Y )  ->  (
( F `  z
)  =  ( F `
 X )  ->  X  e.  Y )
)
1716rexlimdva 2946 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  Y  C_  A
)  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  ->  X  e.  Y ) )
18173impa 1189 . . 3  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
19 eqid 2454 . . . 4  |-  ( F `
 X )  =  ( F `  X
)
20 fveq2 5848 . . . . . 6  |-  ( z  =  X  ->  ( F `  z )  =  ( F `  X ) )
2120eqeq1d 2456 . . . . 5  |-  ( z  =  X  ->  (
( F `  z
)  =  ( F `
 X )  <->  ( F `  X )  =  ( F `  X ) ) )
2221rspcev 3207 . . . 4  |-  ( ( X  e.  Y  /\  ( F `  X )  =  ( F `  X ) )  ->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) )
2319, 22mpan2 669 . . 3  |-  ( X  e.  Y  ->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) )
2418, 23impbid1 203 . 2  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  <-> 
X  e.  Y ) )
254, 24bitrd 253 1  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  X  e.  Y
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805    C_ wss 3461   "cima 4991    Fn wfn 5565   -1-1->wf1 5567   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fv 5578
This theorem is referenced by:  f1imass  6147  domunfican  7785  acndom2  8426  hashf1lem1  12488  f1omvdconj  16670  gsumzaddlem  17133  gsumzaddlemOLD  17135  lindfmm  19029  axcontlem10  24478  eupath2lem3  25181  ismtyima  30539
  Copyright terms: Public domain W3C validator