MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domg Structured version   Unicode version

Theorem f1domg 7543
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1domg  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  A  ~<_  B ) )

Proof of Theorem f1domg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1dmex 6721 . . . . 5  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  A  e.  _V )
2 f1f 5739 . . . . . 6  |-  ( F : A -1-1-> B  ->  F : A --> B )
3 fex 6097 . . . . . 6  |-  ( ( F : A --> B  /\  A  e.  _V )  ->  F  e.  _V )
42, 3sylan 473 . . . . 5  |-  ( ( F : A -1-1-> B  /\  A  e.  _V )  ->  F  e.  _V )
51, 4syldan 472 . . . 4  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  F  e.  _V )
65expcom 436 . . 3  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  F  e.  _V )
)
7 f1eq1 5734 . . . 4  |-  ( f  =  F  ->  (
f : A -1-1-> B  <->  F : A -1-1-> B ) )
87spcegv 3110 . . 3  |-  ( F  e.  _V  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
96, 8syli 38 . 2  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
10 brdomg 7534 . 2  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
119, 10sylibrd 237 1  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  A  ~<_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1657    e. wcel 1872   _Vcvv 3022   class class class wbr 4366   -->wf 5540   -1-1->wf1 5541    ~<_ cdom 7522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-dom 7526
This theorem is referenced by:  f1dom  7545  dom2d  7564  fseqen  8409  infpssrlem5  8688  hashf1  12568  vdwlem12  14885  2ndcdisj  20413  ovolicc2lem4OLD  22415  ovolicc2lem4  22416  basellem4  23952  usgraedgleord  25063  usgredgleord  39052  usgedgleord  39322  usgedgleordALT  39323
  Copyright terms: Public domain W3C validator