MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domg Structured version   Unicode version

Theorem f1domg 7547
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1domg  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  A  ~<_  B ) )

Proof of Theorem f1domg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1dmex 6765 . . . . 5  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  A  e.  _V )
2 f1f 5787 . . . . . 6  |-  ( F : A -1-1-> B  ->  F : A --> B )
3 fex 6144 . . . . . 6  |-  ( ( F : A --> B  /\  A  e.  _V )  ->  F  e.  _V )
42, 3sylan 471 . . . . 5  |-  ( ( F : A -1-1-> B  /\  A  e.  _V )  ->  F  e.  _V )
51, 4syldan 470 . . . 4  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  F  e.  _V )
65expcom 435 . . 3  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  F  e.  _V )
)
7 f1eq1 5782 . . . 4  |-  ( f  =  F  ->  (
f : A -1-1-> B  <->  F : A -1-1-> B ) )
87spcegv 3204 . . 3  |-  ( F  e.  _V  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
96, 8syli 37 . 2  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
10 brdomg 7538 . 2  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
119, 10sylibrd 234 1  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  A  ~<_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1596    e. wcel 1767   _Vcvv 3118   class class class wbr 4453   -->wf 5590   -1-1->wf1 5591    ~<_ cdom 7526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-dom 7530
This theorem is referenced by:  f1dom  7549  dom2d  7568  fseqen  8420  infpssrlem5  8699  hashf1  12487  vdwlem12  14386  2ndcdisj  19825  ovolicc2lem4  21799  basellem4  23223  usgraedgleord  24217  usgedgleord  32209  usgedgleordALT  32210
  Copyright terms: Public domain W3C validator