MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom3el3dif Structured version   Unicode version

Theorem f1dom3el3dif 6091
Description: The range of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019.)
Hypotheses
Ref Expression
f1dom3fv3dif.v  |-  ( ph  ->  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
) )
f1dom3fv3dif.n  |-  ( ph  ->  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )
f1dom3fv3dif.f  |-  ( ph  ->  F : { A ,  B ,  C } -1-1->
R )
Assertion
Ref Expression
f1dom3el3dif  |-  ( ph  ->  E. x  e.  R  E. y  e.  R  E. z  e.  R  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z
) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, F, y, z    x, R, y, z
Allowed substitution hints:    ph( x, y, z)    X( x, y, z)    Y( x, y, z)    Z( x, y, z)

Proof of Theorem f1dom3el3dif
StepHypRef Expression
1 f1dom3fv3dif.f . . 3  |-  ( ph  ->  F : { A ,  B ,  C } -1-1->
R )
2 f1f 5715 . . . 4  |-  ( F : { A ,  B ,  C } -1-1->
R  ->  F : { A ,  B ,  C } --> R )
3 simpr 461 . . . . . . 7  |-  ( (
ph  /\  F : { A ,  B ,  C } --> R )  ->  F : { A ,  B ,  C } --> R )
4 eqidd 2455 . . . . . . . . . 10  |-  ( ph  ->  A  =  A )
543mix1d 1163 . . . . . . . . 9  |-  ( ph  ->  ( A  =  A  \/  A  =  B  \/  A  =  C ) )
6 f1dom3fv3dif.v . . . . . . . . . . 11  |-  ( ph  ->  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
) )
76simp1d 1000 . . . . . . . . . 10  |-  ( ph  ->  A  e.  X )
8 eltpg 4027 . . . . . . . . . 10  |-  ( A  e.  X  ->  ( A  e.  { A ,  B ,  C }  <->  ( A  =  A  \/  A  =  B  \/  A  =  C )
) )
97, 8syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A  e.  { A ,  B ,  C }  <->  ( A  =  A  \/  A  =  B  \/  A  =  C ) ) )
105, 9mpbird 232 . . . . . . . 8  |-  ( ph  ->  A  e.  { A ,  B ,  C }
)
1110adantr 465 . . . . . . 7  |-  ( (
ph  /\  F : { A ,  B ,  C } --> R )  ->  A  e.  { A ,  B ,  C }
)
123, 11ffvelrnd 5954 . . . . . 6  |-  ( (
ph  /\  F : { A ,  B ,  C } --> R )  -> 
( F `  A
)  e.  R )
13 eqidd 2455 . . . . . . . . . 10  |-  ( ph  ->  B  =  B )
14133mix2d 1164 . . . . . . . . 9  |-  ( ph  ->  ( B  =  A  \/  B  =  B  \/  B  =  C ) )
156simp2d 1001 . . . . . . . . . 10  |-  ( ph  ->  B  e.  Y )
16 eltpg 4027 . . . . . . . . . 10  |-  ( B  e.  Y  ->  ( B  e.  { A ,  B ,  C }  <->  ( B  =  A  \/  B  =  B  \/  B  =  C )
) )
1715, 16syl 16 . . . . . . . . 9  |-  ( ph  ->  ( B  e.  { A ,  B ,  C }  <->  ( B  =  A  \/  B  =  B  \/  B  =  C ) ) )
1814, 17mpbird 232 . . . . . . . 8  |-  ( ph  ->  B  e.  { A ,  B ,  C }
)
1918adantr 465 . . . . . . 7  |-  ( (
ph  /\  F : { A ,  B ,  C } --> R )  ->  B  e.  { A ,  B ,  C }
)
203, 19ffvelrnd 5954 . . . . . 6  |-  ( (
ph  /\  F : { A ,  B ,  C } --> R )  -> 
( F `  B
)  e.  R )
216simp3d 1002 . . . . . . . . 9  |-  ( ph  ->  C  e.  Z )
22 tpid3g 4099 . . . . . . . . 9  |-  ( C  e.  Z  ->  C  e.  { A ,  B ,  C } )
2321, 22syl 16 . . . . . . . 8  |-  ( ph  ->  C  e.  { A ,  B ,  C }
)
2423adantr 465 . . . . . . 7  |-  ( (
ph  /\  F : { A ,  B ,  C } --> R )  ->  C  e.  { A ,  B ,  C }
)
253, 24ffvelrnd 5954 . . . . . 6  |-  ( (
ph  /\  F : { A ,  B ,  C } --> R )  -> 
( F `  C
)  e.  R )
2612, 20, 253jca 1168 . . . . 5  |-  ( (
ph  /\  F : { A ,  B ,  C } --> R )  -> 
( ( F `  A )  e.  R  /\  ( F `  B
)  e.  R  /\  ( F `  C )  e.  R ) )
2726expcom 435 . . . 4  |-  ( F : { A ,  B ,  C } --> R  ->  ( ph  ->  ( ( F `  A
)  e.  R  /\  ( F `  B )  e.  R  /\  ( F `  C )  e.  R ) ) )
282, 27syl 16 . . 3  |-  ( F : { A ,  B ,  C } -1-1->
R  ->  ( ph  ->  ( ( F `  A )  e.  R  /\  ( F `  B
)  e.  R  /\  ( F `  C )  e.  R ) ) )
291, 28mpcom 36 . 2  |-  ( ph  ->  ( ( F `  A )  e.  R  /\  ( F `  B
)  e.  R  /\  ( F `  C )  e.  R ) )
30 f1dom3fv3dif.n . . 3  |-  ( ph  ->  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )
316, 30, 1f1dom3fv3dif 6090 . 2  |-  ( ph  ->  ( ( F `  A )  =/=  ( F `  B )  /\  ( F `  A
)  =/=  ( F `
 C )  /\  ( F `  B )  =/=  ( F `  C ) ) )
32 neeq1 2733 . . . 4  |-  ( x  =  ( F `  A )  ->  (
x  =/=  y  <->  ( F `  A )  =/=  y
) )
33 neeq1 2733 . . . 4  |-  ( x  =  ( F `  A )  ->  (
x  =/=  z  <->  ( F `  A )  =/=  z
) )
3432, 333anbi12d 1291 . . 3  |-  ( x  =  ( F `  A )  ->  (
( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z
)  <->  ( ( F `
 A )  =/=  y  /\  ( F `
 A )  =/=  z  /\  y  =/=  z ) ) )
35 neeq2 2735 . . . 4  |-  ( y  =  ( F `  B )  ->  (
( F `  A
)  =/=  y  <->  ( F `  A )  =/=  ( F `  B )
) )
36 neeq1 2733 . . . 4  |-  ( y  =  ( F `  B )  ->  (
y  =/=  z  <->  ( F `  B )  =/=  z
) )
3735, 363anbi13d 1292 . . 3  |-  ( y  =  ( F `  B )  ->  (
( ( F `  A )  =/=  y  /\  ( F `  A
)  =/=  z  /\  y  =/=  z )  <->  ( ( F `  A )  =/=  ( F `  B
)  /\  ( F `  A )  =/=  z  /\  ( F `  B
)  =/=  z ) ) )
38 neeq2 2735 . . . 4  |-  ( z  =  ( F `  C )  ->  (
( F `  A
)  =/=  z  <->  ( F `  A )  =/=  ( F `  C )
) )
39 neeq2 2735 . . . 4  |-  ( z  =  ( F `  C )  ->  (
( F `  B
)  =/=  z  <->  ( F `  B )  =/=  ( F `  C )
) )
4038, 393anbi23d 1293 . . 3  |-  ( z  =  ( F `  C )  ->  (
( ( F `  A )  =/=  ( F `  B )  /\  ( F `  A
)  =/=  z  /\  ( F `  B )  =/=  z )  <->  ( ( F `  A )  =/=  ( F `  B
)  /\  ( F `  A )  =/=  ( F `  C )  /\  ( F `  B
)  =/=  ( F `
 C ) ) ) )
4134, 37, 40rspc3ev 3190 . 2  |-  ( ( ( ( F `  A )  e.  R  /\  ( F `  B
)  e.  R  /\  ( F `  C )  e.  R )  /\  ( ( F `  A )  =/=  ( F `  B )  /\  ( F `  A
)  =/=  ( F `
 C )  /\  ( F `  B )  =/=  ( F `  C ) ) )  ->  E. x  e.  R  E. y  e.  R  E. z  e.  R  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z
) )
4229, 31, 41syl2anc 661 1  |-  ( ph  ->  E. x  e.  R  E. y  e.  R  E. z  e.  R  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   E.wrex 2800   {ctp 3990   -->wf 5523   -1-1->wf1 5524   ` cfv 5527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fv 5535
This theorem is referenced by:  hashge3el3dif  12306
  Copyright terms: Public domain W3C validator