MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cocnv2 Structured version   Unicode version

Theorem f1cocnv2 5841
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv2  |-  ( F : A -1-1-> B  -> 
( F  o.  `' F )  =  (  _I  |`  ran  F ) )

Proof of Theorem f1cocnv2
StepHypRef Expression
1 f1fun 5781 . 2  |-  ( F : A -1-1-> B  ->  Fun  F )
2 funcocnv2 5838 . 2  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
31, 2syl 16 1  |-  ( F : A -1-1-> B  -> 
( F  o.  `' F )  =  (  _I  |`  ran  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    _I cid 4790   `'ccnv 4998   ran crn 5000    |` cres 5001    o. ccom 5003   Fun wfun 5580   -1-1->wf1 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator