MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cocnv1 Structured version   Unicode version

Theorem f1cocnv1 5754
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv1  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)

Proof of Theorem f1cocnv1
StepHypRef Expression
1 f1f1orn 5736 . 2  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
2 f1ococnv1 5753 . 2  |-  ( F : A -1-1-onto-> ran  F  ->  ( `' F  o.  F
)  =  (  _I  |`  A ) )
31, 2syl 16 1  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    _I cid 4715   `'ccnv 4923   ran crn 4925    |` cres 4926    o. ccom 4928   -1-1->wf1 5499   -1-1-onto->wf1o 5501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-sep 4497  ax-nul 4505  ax-pr 4615
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-rab 2801  df-v 3056  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-sn 3962  df-pr 3964  df-op 3968  df-br 4377  df-opab 4435  df-id 4720  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509
This theorem is referenced by:  f1eqcocnv  6084  domss2  7556  diophrw  29221
  Copyright terms: Public domain W3C validator