MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1co Structured version   Unicode version

Theorem f1co 5775
Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
f1co  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )

Proof of Theorem f1co
StepHypRef Expression
1 df-f1 5576 . . 3  |-  ( F : B -1-1-> C  <->  ( F : B --> C  /\  Fun  `' F ) )
2 df-f1 5576 . . 3  |-  ( G : A -1-1-> B  <->  ( G : A --> B  /\  Fun  `' G ) )
3 fco 5726 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
4 funco 5609 . . . . . . 7  |-  ( ( Fun  `' G  /\  Fun  `' F )  ->  Fun  ( `' G  o.  `' F ) )
5 cnvco 5011 . . . . . . . 8  |-  `' ( F  o.  G )  =  ( `' G  o.  `' F )
65funeqi 5591 . . . . . . 7  |-  ( Fun  `' ( F  o.  G )  <->  Fun  ( `' G  o.  `' F
) )
74, 6sylibr 214 . . . . . 6  |-  ( ( Fun  `' G  /\  Fun  `' F )  ->  Fun  `' ( F  o.  G
) )
87ancoms 453 . . . . 5  |-  ( ( Fun  `' F  /\  Fun  `' G )  ->  Fun  `' ( F  o.  G
) )
93, 8anim12i 566 . . . 4  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  ( Fun  `' F  /\  Fun  `' G ) )  -> 
( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G ) ) )
109an4s 829 . . 3  |-  ( ( ( F : B --> C  /\  Fun  `' F
)  /\  ( G : A --> B  /\  Fun  `' G ) )  -> 
( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G ) ) )
111, 2, 10syl2anb 479 . 2  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G
) ) )
12 df-f1 5576 . 2  |-  ( ( F  o.  G ) : A -1-1-> C  <->  ( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G
) ) )
1311, 12sylibr 214 1  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   `'ccnv 4824    o. ccom 4829   Fun wfun 5565   -->wf 5567   -1-1->wf1 5568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pr 4632
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-sn 3975  df-pr 3977  df-op 3981  df-br 4398  df-opab 4456  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576
This theorem is referenced by:  f1oco  5823  tposf12  6985  domtr  7608  dfac12lem2  8558  fin23lem28  8754  pwfseqlem5  9073  cofth  15550  gsumzf1o  17243  gsumzf1oOLD  17246  erdsze2lem2  29514
  Copyright terms: Public domain W3C validator