MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnv Structured version   Unicode version

Theorem f1cnv 5821
Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cnv  |-  ( F : A -1-1-> B  ->  `' F : ran  F -1-1-onto-> A
)

Proof of Theorem f1cnv
StepHypRef Expression
1 f1f1orn 5809 . 2  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
2 f1ocnv 5810 . 2  |-  ( F : A -1-1-onto-> ran  F  ->  `' F : ran  F -1-1-onto-> A )
31, 2syl 16 1  |-  ( F : A -1-1-> B  ->  `' F : ran  F -1-1-onto-> A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   `'ccnv 4987   ran crn 4989   -1-1->wf1 5567   -1-1-onto->wf1o 5569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577
This theorem is referenced by:  f1dmex  6743  fin1a2lem7  8777  diophrw  30931
  Copyright terms: Public domain W3C validator