MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extmptsuppeq Structured version   Visualization version   Unicode version

Theorem extmptsuppeq 6939
Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
extmptsuppeq.b  |-  ( ph  ->  B  e.  W )
extmptsuppeq.a  |-  ( ph  ->  A  C_  B )
extmptsuppeq.z  |-  ( (
ph  /\  n  e.  ( B  \  A ) )  ->  X  =  Z )
Assertion
Ref Expression
extmptsuppeq  |-  ( ph  ->  ( ( n  e.  A  |->  X ) supp  Z
)  =  ( ( n  e.  B  |->  X ) supp  Z ) )
Distinct variable groups:    A, n    B, n    n, Z    ph, n
Allowed substitution hints:    W( n)    X( n)

Proof of Theorem extmptsuppeq
StepHypRef Expression
1 extmptsuppeq.a . . . . . . . . 9  |-  ( ph  ->  A  C_  B )
21adantl 468 . . . . . . . 8  |-  ( ( Z  e.  _V  /\  ph )  ->  A  C_  B
)
32sseld 3431 . . . . . . 7  |-  ( ( Z  e.  _V  /\  ph )  ->  ( n  e.  A  ->  n  e.  B ) )
43anim1d 568 . . . . . 6  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  A  /\  X  e.  ( _V  \  { Z } ) )  ->  ( n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) ) )
5 eldif 3414 . . . . . . . . . . . . 13  |-  ( n  e.  ( B  \  A )  <->  ( n  e.  B  /\  -.  n  e.  A ) )
6 extmptsuppeq.z . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( B  \  A ) )  ->  X  =  Z )
76adantll 720 . . . . . . . . . . . . 13  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  ( B  \  A
) )  ->  X  =  Z )
85, 7sylan2br 479 . . . . . . . . . . . 12  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  (
n  e.  B  /\  -.  n  e.  A
) )  ->  X  =  Z )
98expr 620 . . . . . . . . . . 11  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  B )  ->  ( -.  n  e.  A  ->  X  =  Z ) )
10 elsnc2g 3998 . . . . . . . . . . . . 13  |-  ( Z  e.  _V  ->  ( X  e.  { Z } 
<->  X  =  Z ) )
11 elndif 3557 . . . . . . . . . . . . 13  |-  ( X  e.  { Z }  ->  -.  X  e.  ( _V  \  { Z } ) )
1210, 11syl6bir 233 . . . . . . . . . . . 12  |-  ( Z  e.  _V  ->  ( X  =  Z  ->  -.  X  e.  ( _V 
\  { Z }
) ) )
1312ad2antrr 732 . . . . . . . . . . 11  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  B )  ->  ( X  =  Z  ->  -.  X  e.  ( _V 
\  { Z }
) ) )
149, 13syld 45 . . . . . . . . . 10  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  B )  ->  ( -.  n  e.  A  ->  -.  X  e.  ( _V  \  { Z } ) ) )
1514con4d 109 . . . . . . . . 9  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  B )  ->  ( X  e.  ( _V  \  { Z } )  ->  n  e.  A
) )
1615impr 625 . . . . . . . 8  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  (
n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) )  ->  n  e.  A )
17 simprr 766 . . . . . . . 8  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  (
n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) )  ->  X  e.  ( _V  \  { Z } ) )
1816, 17jca 535 . . . . . . 7  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  (
n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) )  ->  (
n  e.  A  /\  X  e.  ( _V  \  { Z } ) ) )
1918ex 436 . . . . . 6  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  B  /\  X  e.  ( _V  \  { Z } ) )  ->  ( n  e.  A  /\  X  e.  ( _V  \  { Z } ) ) ) )
204, 19impbid 194 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  A  /\  X  e.  ( _V  \  { Z } ) )  <->  ( n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) ) )
2120rabbidva2 3034 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  { n  e.  A  |  X  e.  ( _V  \  { Z } ) }  =  { n  e.  B  |  X  e.  ( _V  \  { Z }
) } )
22 eqid 2451 . . . . 5  |-  ( n  e.  A  |->  X )  =  ( n  e.  A  |->  X )
23 extmptsuppeq.b . . . . . . 7  |-  ( ph  ->  B  e.  W )
2423, 1ssexd 4550 . . . . . 6  |-  ( ph  ->  A  e.  _V )
2524adantl 468 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  A  e.  _V )
26 simpl 459 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  Z  e.  _V )
2722, 25, 26mptsuppdifd 6937 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  A  |->  X ) supp  Z )  =  { n  e.  A  |  X  e.  ( _V  \  { Z }
) } )
28 eqid 2451 . . . . 5  |-  ( n  e.  B  |->  X )  =  ( n  e.  B  |->  X )
2923adantl 468 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  B  e.  W )
3028, 29, 26mptsuppdifd 6937 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  B  |->  X ) supp  Z )  =  { n  e.  B  |  X  e.  ( _V  \  { Z }
) } )
3121, 27, 303eqtr4d 2495 . . 3  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  A  |->  X ) supp  Z )  =  ( ( n  e.  B  |->  X ) supp  Z
) )
3231ex 436 . 2  |-  ( Z  e.  _V  ->  ( ph  ->  ( ( n  e.  A  |->  X ) supp 
Z )  =  ( ( n  e.  B  |->  X ) supp  Z ) ) )
33 simpr 463 . . . . . 6  |-  ( ( ( n  e.  A  |->  X )  e.  _V  /\  Z  e.  _V )  ->  Z  e.  _V )
3433con3i 141 . . . . 5  |-  ( -.  Z  e.  _V  ->  -.  ( ( n  e.  A  |->  X )  e. 
_V  /\  Z  e.  _V ) )
35 supp0prc 6917 . . . . 5  |-  ( -.  ( ( n  e.  A  |->  X )  e. 
_V  /\  Z  e.  _V )  ->  ( ( n  e.  A  |->  X ) supp  Z )  =  (/) )
3634, 35syl 17 . . . 4  |-  ( -.  Z  e.  _V  ->  ( ( n  e.  A  |->  X ) supp  Z )  =  (/) )
37 simpr 463 . . . . . 6  |-  ( ( ( n  e.  B  |->  X )  e.  _V  /\  Z  e.  _V )  ->  Z  e.  _V )
3837con3i 141 . . . . 5  |-  ( -.  Z  e.  _V  ->  -.  ( ( n  e.  B  |->  X )  e. 
_V  /\  Z  e.  _V ) )
39 supp0prc 6917 . . . . 5  |-  ( -.  ( ( n  e.  B  |->  X )  e. 
_V  /\  Z  e.  _V )  ->  ( ( n  e.  B  |->  X ) supp  Z )  =  (/) )
4038, 39syl 17 . . . 4  |-  ( -.  Z  e.  _V  ->  ( ( n  e.  B  |->  X ) supp  Z )  =  (/) )
4136, 40eqtr4d 2488 . . 3  |-  ( -.  Z  e.  _V  ->  ( ( n  e.  A  |->  X ) supp  Z )  =  ( ( n  e.  B  |->  X ) supp 
Z ) )
4241a1d 26 . 2  |-  ( -.  Z  e.  _V  ->  (
ph  ->  ( ( n  e.  A  |->  X ) supp 
Z )  =  ( ( n  e.  B  |->  X ) supp  Z ) ) )
4332, 42pm2.61i 168 1  |-  ( ph  ->  ( ( n  e.  A  |->  X ) supp  Z
)  =  ( ( n  e.  B  |->  X ) supp  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   {crab 2741   _Vcvv 3045    \ cdif 3401    C_ wss 3404   (/)c0 3731   {csn 3968    |-> cmpt 4461  (class class class)co 6290   supp csupp 6914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-supp 6915
This theorem is referenced by:  cantnfrescl  8181  cantnfres  8182
  Copyright terms: Public domain W3C validator