![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsimpr | Structured version Visualization version Unicode version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 468 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eximi 1715 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 |
This theorem depends on definitions: df-bi 190 df-an 378 df-ex 1672 |
This theorem is referenced by: 19.40 1739 spsbe 1809 rexex 2843 ceqsexv2d 3071 imassrn 5185 fv3 5892 finacn 8499 dfac4 8571 kmlem2 8599 ac6c5 8930 ac6s3 8935 ac6s5 8939 bj-finsumval0 31772 mptsnunlem 31810 topdifinffinlem 31820 heiborlem3 32209 ac6s3f 32478 |
Copyright terms: Public domain | W3C validator |