MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exrot3 Structured version   Unicode version

Theorem exrot3 1838
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exrot3  |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )

Proof of Theorem exrot3
StepHypRef Expression
1 excom13 1837 . 2  |-  ( E. x E. y E. z ph  <->  E. z E. y E. x ph )
2 excom 1835 . 2  |-  ( E. z E. y E. x ph  <->  E. y E. z E. x ph )
31, 2bitri 249 1  |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   E.wex 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-11 1828
This theorem depends on definitions:  df-bi 185  df-ex 1600
This theorem is referenced by:  opabn0  4768  dmoprab  6368  rnoprab  6370  xpassen  7613  cnvoprab  27418  elima4  29184  brimg  29562  ellines  29777
  Copyright terms: Public domain W3C validator