MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expubnd Structured version   Unicode version

Theorem expubnd 11907
Description: An upper bound on  A ^ N when  2  <_  A. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
expubnd  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2 ^ N )  x.  (
( A  -  1 ) ^ N ) ) )

Proof of Theorem expubnd
StepHypRef Expression
1 simp1 981 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  A  e.  RR )
2 2re 10378 . . . . 5  |-  2  e.  RR
3 peano2rem 9662 . . . . 5  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
4 remulcl 9354 . . . . 5  |-  ( ( 2  e.  RR  /\  ( A  -  1
)  e.  RR )  ->  ( 2  x.  ( A  -  1 ) )  e.  RR )
52, 3, 4sylancr 656 . . . 4  |-  ( A  e.  RR  ->  (
2  x.  ( A  -  1 ) )  e.  RR )
653ad2ant1 1002 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
2  x.  ( A  -  1 ) )  e.  RR )
7 simp2 982 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  N  e.  NN0 )
8 0le2 10399 . . . . . . 7  |-  0  <_  2
9 0re 9373 . . . . . . . 8  |-  0  e.  RR
10 letr 9455 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  2  e.  RR  /\  A  e.  RR )  ->  (
( 0  <_  2  /\  2  <_  A )  ->  0  <_  A
) )
119, 2, 10mp3an12 1297 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0  <_  2  /\  2  <_  A )  ->  0  <_  A
) )
128, 11mpani 669 . . . . . 6  |-  ( A  e.  RR  ->  (
2  <_  A  ->  0  <_  A ) )
1312imp 429 . . . . 5  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
0  <_  A )
14 resubcl 9660 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  2  e.  RR )  ->  ( A  -  2 )  e.  RR )
152, 14mpan2 664 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  2 )  e.  RR )
16 leadd2 9795 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  ( A  -  2 )  e.  RR )  -> 
( 2  <_  A  <->  ( ( A  -  2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) ) )
172, 16mp3an1 1294 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( A  -  2
)  e.  RR )  ->  ( 2  <_  A 
<->  ( ( A  - 
2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) ) )
1815, 17mpdan 661 . . . . . . 7  |-  ( A  e.  RR  ->  (
2  <_  A  <->  ( ( A  -  2 )  +  2 )  <_ 
( ( A  - 
2 )  +  A
) ) )
1918biimpa 481 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) )
20 recn 9359 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
21 2cn 10379 . . . . . . . 8  |-  2  e.  CC
22 npcan 9606 . . . . . . . 8  |-  ( ( A  e.  CC  /\  2  e.  CC )  ->  ( ( A  - 
2 )  +  2 )  =  A )
2320, 21, 22sylancl 655 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  2 )  +  2 )  =  A )
2423adantr 462 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  2 )  =  A )
25 ax-1cn 9327 . . . . . . . . . 10  |-  1  e.  CC
26 subdi 9765 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  A  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( A  -  1 ) )  =  ( ( 2  x.  A )  -  ( 2  x.  1 ) ) )
2721, 25, 26mp3an13 1298 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
2  x.  ( A  -  1 ) )  =  ( ( 2  x.  A )  -  ( 2  x.  1 ) ) )
28 2times 10427 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
29 2t1e2 10457 . . . . . . . . . . 11  |-  ( 2  x.  1 )  =  2
3029a1i 11 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
2  x.  1 )  =  2 )
3128, 30oveq12d 6098 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  -  ( 2  x.  1 ) )  =  ( ( A  +  A )  - 
2 ) )
32 addsub 9608 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  e.  CC  /\  2  e.  CC )  ->  (
( A  +  A
)  -  2 )  =  ( ( A  -  2 )  +  A ) )
3321, 32mp3an3 1296 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( ( A  +  A )  -  2 )  =  ( ( A  -  2 )  +  A ) )
3433anidms 638 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A  +  A
)  -  2 )  =  ( ( A  -  2 )  +  A ) )
3527, 31, 343eqtrrd 2470 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A  -  2 )  +  A )  =  ( 2  x.  ( A  -  1 ) ) )
3620, 35syl 16 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  2 )  +  A )  =  ( 2  x.  ( A  -  1 ) ) )
3736adantr 462 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  A
)  =  ( 2  x.  ( A  - 
1 ) ) )
3819, 24, 373brtr3d 4309 . . . . 5  |-  ( ( A  e.  RR  /\  2  <_  A )  ->  A  <_  ( 2  x.  ( A  -  1 ) ) )
3913, 38jca 529 . . . 4  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( 0  <_  A  /\  A  <_  ( 2  x.  ( A  - 
1 ) ) ) )
40393adant2 1000 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
0  <_  A  /\  A  <_  ( 2  x.  ( A  -  1 ) ) ) )
41 leexp1a 11905 . . 3  |-  ( ( ( A  e.  RR  /\  ( 2  x.  ( A  -  1 ) )  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  ( 2  x.  ( A  - 
1 ) ) ) )  ->  ( A ^ N )  <_  (
( 2  x.  ( A  -  1 ) ) ^ N ) )
421, 6, 7, 40, 41syl31anc 1214 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2  x.  ( A  -  1 ) ) ^ N
) )
433recnd 9399 . . . 4  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  CC )
44 mulexp 11886 . . . . 5  |-  ( ( 2  e.  CC  /\  ( A  -  1
)  e.  CC  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
4521, 44mp3an1 1294 . . . 4  |-  ( ( ( A  -  1 )  e.  CC  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
4643, 45sylan 468 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
47463adant3 1001 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
( 2  x.  ( A  -  1 ) ) ^ N )  =  ( ( 2 ^ N )  x.  ( ( A  - 
1 ) ^ N
) ) )
4842, 47breqtrd 4304 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2 ^ N )  x.  (
( A  -  1 ) ^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   class class class wbr 4280  (class class class)co 6080   CCcc 9267   RRcr 9268   0cc0 9269   1c1 9270    + caddc 9272    x. cmul 9274    <_ cle 9406    - cmin 9582   2c2 10358   NN0cn0 10566   ^cexp 11848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-nn 10310  df-2 10367  df-n0 10567  df-z 10634  df-uz 10849  df-seq 11790  df-exp 11849
This theorem is referenced by:  faclbnd4lem1  12052
  Copyright terms: Public domain W3C validator