MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnlbnd Structured version   Unicode version

Theorem expnlbnd 12264
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.)
Assertion
Ref Expression
expnlbnd  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
)
Distinct variable groups:    A, k    B, k

Proof of Theorem expnlbnd
StepHypRef Expression
1 rpre 11226 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpne0 11235 . . . 4  |-  ( A  e.  RR+  ->  A  =/=  0 )
31, 2rereccld 10371 . . 3  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR )
4 expnbnd 12263 . . 3  |-  ( ( ( 1  /  A
)  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( 1  /  A )  <  ( B ^ k ) )
53, 4syl3an1 1261 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  /  A )  <  ( B ^ k ) )
6 rpregt0 11233 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
763ad2ant1 1017 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( A  e.  RR  /\  0  <  A ) )
87adantr 465 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( A  e.  RR  /\  0  <  A ) )
9 nnnn0 10802 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
10 reexpcl 12151 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
119, 10sylan2 474 . . . . . . 7  |-  ( ( B  e.  RR  /\  k  e.  NN )  ->  ( B ^ k
)  e.  RR )
1211adantlr 714 . . . . . 6  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
13 simpll 753 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  B  e.  RR )
14 nnz 10886 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  ZZ )
1514adantl 466 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  k  e.  ZZ )
16 0lt1 10075 . . . . . . . . . 10  |-  0  <  1
17 0re 9596 . . . . . . . . . . 11  |-  0  e.  RR
18 1re 9595 . . . . . . . . . . 11  |-  1  e.  RR
19 lttr 9661 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
2017, 18, 19mp3an12 1314 . . . . . . . . . 10  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
2116, 20mpani 676 . . . . . . . . 9  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
2221imp 429 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  <  B )  -> 
0  <  B )
2322adantr 465 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  0  <  B
)
24 expgt0 12167 . . . . . . 7  |-  ( ( B  e.  RR  /\  k  e.  ZZ  /\  0  <  B )  ->  0  <  ( B ^ k
) )
2513, 15, 23, 24syl3anc 1228 . . . . . 6  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  0  <  ( B ^ k ) )
2612, 25jca 532 . . . . 5  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( B ^ k )  e.  RR  /\  0  < 
( B ^ k
) ) )
27263adantl1 1152 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( B ^
k )  e.  RR  /\  0  <  ( B ^ k ) ) )
28 ltrec1 10432 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( B ^ k )  e.  RR  /\  0  < 
( B ^ k
) ) )  -> 
( ( 1  /  A )  <  ( B ^ k )  <->  ( 1  /  ( B ^
k ) )  < 
A ) )
298, 27, 28syl2anc 661 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( 1  /  A )  <  ( B ^ k )  <->  ( 1  /  ( B ^
k ) )  < 
A ) )
3029rexbidva 2970 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( E. k  e.  NN  ( 1  /  A
)  <  ( B ^ k )  <->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
) )
315, 30mpbid 210 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767   E.wrex 2815   class class class wbr 4447  (class class class)co 6284   RRcr 9491   0cc0 9492   1c1 9493    < clt 9628    / cdiv 10206   NNcn 10536   NN0cn0 10795   ZZcz 10864   RR+crp 11220   ^cexp 12134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fl 11897  df-seq 12076  df-exp 12135
This theorem is referenced by:  expnlbnd2  12265  opnmbllem  21773  opnmbllem0  29655  heiborlem7  29944
  Copyright terms: Public domain W3C validator