MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnass Structured version   Unicode version

Theorem expnass 12252
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.)
Assertion
Ref Expression
expnass  |-  ( ( 3 ^ 3 ) ^ 3 )  < 
( 3 ^ (
3 ^ 3 ) )

Proof of Theorem expnass
StepHypRef Expression
1 3cn 10616 . . 3  |-  3  e.  CC
2 3nn0 10819 . . 3  |-  3  e.  NN0
3 expmul 12190 . . 3  |-  ( ( 3  e.  CC  /\  3  e.  NN0  /\  3  e.  NN0 )  ->  (
3 ^ ( 3  x.  3 ) )  =  ( ( 3 ^ 3 ) ^
3 ) )
41, 2, 2, 3mp3an 1325 . 2  |-  ( 3 ^ ( 3  x.  3 ) )  =  ( ( 3 ^ 3 ) ^ 3 )
5 3re 10615 . . 3  |-  3  e.  RR
62, 2nn0mulcli 10840 . . . 4  |-  ( 3  x.  3 )  e. 
NN0
76nn0zi 10895 . . 3  |-  ( 3  x.  3 )  e.  ZZ
82, 2nn0expcli 12171 . . . 4  |-  ( 3 ^ 3 )  e. 
NN0
98nn0zi 10895 . . 3  |-  ( 3 ^ 3 )  e.  ZZ
10 1lt3 10710 . . . 4  |-  1  <  3
111sqvali 12226 . . . . 5  |-  ( 3 ^ 2 )  =  ( 3  x.  3 )
12 2z 10902 . . . . . 6  |-  2  e.  ZZ
13 3z 10903 . . . . . 6  |-  3  e.  ZZ
14 2lt3 10709 . . . . . . 7  |-  2  <  3
15 ltexp2a 12196 . . . . . . 7  |-  ( ( ( 3  e.  RR  /\  2  e.  ZZ  /\  3  e.  ZZ )  /\  ( 1  <  3  /\  2  <  3
) )  ->  (
3 ^ 2 )  <  ( 3 ^ 3 ) )
1610, 14, 15mpanr12 685 . . . . . 6  |-  ( ( 3  e.  RR  /\  2  e.  ZZ  /\  3  e.  ZZ )  ->  (
3 ^ 2 )  <  ( 3 ^ 3 ) )
175, 12, 13, 16mp3an 1325 . . . . 5  |-  ( 3 ^ 2 )  < 
( 3 ^ 3 )
1811, 17eqbrtrri 4458 . . . 4  |-  ( 3  x.  3 )  < 
( 3 ^ 3 )
19 ltexp2a 12196 . . . 4  |-  ( ( ( 3  e.  RR  /\  ( 3  x.  3 )  e.  ZZ  /\  ( 3 ^ 3 )  e.  ZZ )  /\  ( 1  <  3  /\  ( 3  x.  3 )  < 
( 3 ^ 3 ) ) )  -> 
( 3 ^ (
3  x.  3 ) )  <  ( 3 ^ ( 3 ^ 3 ) ) )
2010, 18, 19mpanr12 685 . . 3  |-  ( ( 3  e.  RR  /\  ( 3  x.  3 )  e.  ZZ  /\  ( 3 ^ 3 )  e.  ZZ )  ->  ( 3 ^ ( 3  x.  3 ) )  <  (
3 ^ ( 3 ^ 3 ) ) )
215, 7, 9, 20mp3an 1325 . 2  |-  ( 3 ^ ( 3  x.  3 ) )  < 
( 3 ^ (
3 ^ 3 ) )
224, 21eqbrtrri 4458 1  |-  ( ( 3 ^ 3 ) ^ 3 )  < 
( 3 ^ (
3 ^ 3 ) )
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 974    = wceq 1383    e. wcel 1804   class class class wbr 4437  (class class class)co 6281   CCcc 9493   RRcr 9494   1c1 9496    x. cmul 9500    < clt 9631   2c2 10591   3c3 10592   NN0cn0 10801   ZZcz 10870   ^cexp 12145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-n0 10802  df-z 10871  df-uz 11091  df-rp 11230  df-seq 12087  df-exp 12146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator