MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnass Structured version   Unicode version

Theorem expnass 12255
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.)
Assertion
Ref Expression
expnass  |-  ( ( 3 ^ 3 ) ^ 3 )  < 
( 3 ^ (
3 ^ 3 ) )

Proof of Theorem expnass
StepHypRef Expression
1 3cn 10606 . . 3  |-  3  e.  CC
2 3nn0 10809 . . 3  |-  3  e.  NN0
3 expmul 12193 . . 3  |-  ( ( 3  e.  CC  /\  3  e.  NN0  /\  3  e.  NN0 )  ->  (
3 ^ ( 3  x.  3 ) )  =  ( ( 3 ^ 3 ) ^
3 ) )
41, 2, 2, 3mp3an 1322 . 2  |-  ( 3 ^ ( 3  x.  3 ) )  =  ( ( 3 ^ 3 ) ^ 3 )
5 3re 10605 . . 3  |-  3  e.  RR
62, 2nn0mulcli 10830 . . . 4  |-  ( 3  x.  3 )  e. 
NN0
76nn0zi 10885 . . 3  |-  ( 3  x.  3 )  e.  ZZ
82, 2nn0expcli 12174 . . . 4  |-  ( 3 ^ 3 )  e. 
NN0
98nn0zi 10885 . . 3  |-  ( 3 ^ 3 )  e.  ZZ
10 1lt3 10700 . . . 4  |-  1  <  3
111sqvali 12229 . . . . 5  |-  ( 3 ^ 2 )  =  ( 3  x.  3 )
12 2z 10892 . . . . . 6  |-  2  e.  ZZ
13 3z 10893 . . . . . 6  |-  3  e.  ZZ
14 2lt3 10699 . . . . . . 7  |-  2  <  3
15 ltexp2a 12199 . . . . . . 7  |-  ( ( ( 3  e.  RR  /\  2  e.  ZZ  /\  3  e.  ZZ )  /\  ( 1  <  3  /\  2  <  3
) )  ->  (
3 ^ 2 )  <  ( 3 ^ 3 ) )
1610, 14, 15mpanr12 683 . . . . . 6  |-  ( ( 3  e.  RR  /\  2  e.  ZZ  /\  3  e.  ZZ )  ->  (
3 ^ 2 )  <  ( 3 ^ 3 ) )
175, 12, 13, 16mp3an 1322 . . . . 5  |-  ( 3 ^ 2 )  < 
( 3 ^ 3 )
1811, 17eqbrtrri 4460 . . . 4  |-  ( 3  x.  3 )  < 
( 3 ^ 3 )
19 ltexp2a 12199 . . . 4  |-  ( ( ( 3  e.  RR  /\  ( 3  x.  3 )  e.  ZZ  /\  ( 3 ^ 3 )  e.  ZZ )  /\  ( 1  <  3  /\  ( 3  x.  3 )  < 
( 3 ^ 3 ) ) )  -> 
( 3 ^ (
3  x.  3 ) )  <  ( 3 ^ ( 3 ^ 3 ) ) )
2010, 18, 19mpanr12 683 . . 3  |-  ( ( 3  e.  RR  /\  ( 3  x.  3 )  e.  ZZ  /\  ( 3 ^ 3 )  e.  ZZ )  ->  ( 3 ^ ( 3  x.  3 ) )  <  (
3 ^ ( 3 ^ 3 ) ) )
215, 7, 9, 20mp3an 1322 . 2  |-  ( 3 ^ ( 3  x.  3 ) )  < 
( 3 ^ (
3 ^ 3 ) )
224, 21eqbrtrri 4460 1  |-  ( ( 3 ^ 3 ) ^ 3 )  < 
( 3 ^ (
3 ^ 3 ) )
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439  (class class class)co 6270   CCcc 9479   RRcr 9480   1c1 9482    x. cmul 9486    < clt 9617   2c2 10581   3c3 10582   NN0cn0 10791   ZZcz 10860   ^cexp 12148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-seq 12090  df-exp 12149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator