MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  explecnv Structured version   Unicode version

Theorem explecnv 13327
Description: A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1  |-  Z  =  ( ZZ>= `  M )
explecnv.2  |-  ( ph  ->  F  e.  V )
explecnv.3  |-  ( ph  ->  M  e.  ZZ )
explecnv.5  |-  ( ph  ->  A  e.  RR )
explecnv.4  |-  ( ph  ->  ( abs `  A
)  <  1 )
explecnv.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
explecnv.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
Assertion
Ref Expression
explecnv  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    A, k    ph, k    k, F    k, Z    k, M
Allowed substitution hint:    V( k)

Proof of Theorem explecnv
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . 3  |-  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M
) )  =  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )
2 0z 10657 . . . 4  |-  0  e.  ZZ
3 explecnv.3 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 ifcl 3831 . . . 4  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
52, 3, 4sylancr 663 . . 3  |-  ( ph  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
6 explecnv.5 . . . . 5  |-  ( ph  ->  A  e.  RR )
76recnd 9412 . . . 4  |-  ( ph  ->  A  e.  CC )
8 explecnv.4 . . . 4  |-  ( ph  ->  ( abs `  A
)  <  1 )
97, 8expcnv 13326 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
10 explecnv.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
11 fvex 5701 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
1210, 11eqeltri 2513 . . . . 5  |-  Z  e. 
_V
1312mptex 5948 . . . 4  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  e. 
_V
1413a1i 11 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  e.  _V )
15 nn0uz 10895 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
1610, 15ineq12i 3550 . . . . . . . . . 10  |-  ( Z  i^i  NN0 )  =  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  0 )
)
17 uzin 10893 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
183, 2, 17sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
1916, 18syl5req 2488 . . . . . . . . 9  |-  ( ph  ->  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  =  ( Z  i^i  NN0 ) )
2019eleq2d 2510 . . . . . . . 8  |-  ( ph  ->  ( k  e.  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  <-> 
k  e.  ( Z  i^i  NN0 ) ) )
2120biimpa 484 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  ( Z  i^i  NN0 )
)
22 elin 3539 . . . . . . 7  |-  ( k  e.  ( Z  i^i  NN0 )  <->  ( k  e.  Z  /\  k  e. 
NN0 ) )
2321, 22sylib 196 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( k  e.  Z  /\  k  e.  NN0 ) )
2423simprd 463 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  NN0 )
25 oveq2 6099 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
26 eqid 2443 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
27 ovex 6116 . . . . . 6  |-  ( A ^ k )  e. 
_V
2825, 26, 27fvmpt 5774 . . . . 5  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
2924, 28syl 16 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
306adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  RR )
3130, 24reexpcld 12025 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  RR )
3229, 31eqeltrd 2517 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  RR )
3323simpld 459 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  Z )
34 fveq2 5691 . . . . . . 7  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
3534fveq2d 5695 . . . . . 6  |-  ( n  =  k  ->  ( abs `  ( F `  n ) )  =  ( abs `  ( F `  k )
) )
36 eqid 2443 . . . . . 6  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  =  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )
37 fvex 5701 . . . . . 6  |-  ( abs `  ( F `  k
) )  e.  _V
3835, 36, 37fvmpt 5774 . . . . 5  |-  ( k  e.  Z  ->  (
( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
3933, 38syl 16 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  =  ( abs `  ( F `  k )
) )
40 explecnv.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4133, 40syldan 470 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( F `  k )  e.  CC )
4241abscld 12922 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  e.  RR )
4339, 42eqeltrd 2517 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  e.  RR )
44 explecnv.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
4533, 44syldan 470 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  <_  ( A ^ k ) )
4645, 39, 293brtr4d 4322 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k ) )
4741absge0d 12930 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( abs `  ( F `
 k ) ) )
4847, 39breqtrrd 4318 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
) )
491, 5, 9, 14, 32, 43, 46, 48climsqz2 13119 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  ~~>  0 )
50 explecnv.2 . . 3  |-  ( ph  ->  F  e.  V )
5138adantl 466 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
5210, 3, 50, 14, 40, 51climabs0 13063 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) )  ~~>  0 ) )
5349, 52mpbird 232 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2972    i^i cin 3327   ifcif 3791   class class class wbr 4292    e. cmpt 4350   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    < clt 9418    <_ cle 9419   NN0cn0 10579   ZZcz 10646   ZZ>=cuz 10861   ^cexp 11865   abscabs 12723    ~~> cli 12962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-fl 11642  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-rlim 12967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator