MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expi Structured version   Unicode version

Theorem expi 151
Description: An exportation inference. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
expi.1  |-  ( -.  ( ph  ->  -.  ps )  ->  ch )
Assertion
Ref Expression
expi  |-  ( ph  ->  ( ps  ->  ch ) )

Proof of Theorem expi
StepHypRef Expression
1 pm3.2im 147 . 2  |-  ( ph  ->  ( ps  ->  -.  ( ph  ->  -.  ps )
) )
2 expi.1 . 2  |-  ( -.  ( ph  ->  -.  ps )  ->  ch )
31, 2syl6 33 1  |-  ( ph  ->  ( ps  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impbi  188  imbi12  322  ex  434
  Copyright terms: Public domain W3C validator