Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowthi Structured version   Unicode version

Theorem expgrowthi 29604
Description: Exponential growth and decay model. See expgrowth 29606 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Hypotheses
Ref Expression
expgrowthi.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
expgrowthi.k  |-  ( ph  ->  K  e.  CC )
expgrowthi.y0  |-  ( ph  ->  C  e.  CC )
expgrowthi.yt  |-  Y  =  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t ) ) ) )
Assertion
Ref Expression
expgrowthi  |-  ( ph  ->  ( S  _D  Y
)  =  ( ( S  X.  { K } )  oF  x.  Y ) )
Distinct variable groups:    t, C    t, K    t, S
Allowed substitution hints:    ph( t)    Y( t)

Proof of Theorem expgrowthi
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowthi.yt . . . . 5  |-  Y  =  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t ) ) ) )
2 oveq2 6097 . . . . . . . 8  |-  ( t  =  y  ->  ( K  x.  t )  =  ( K  x.  y ) )
32fveq2d 5693 . . . . . . 7  |-  ( t  =  y  ->  ( exp `  ( K  x.  t ) )  =  ( exp `  ( K  x.  y )
) )
43oveq2d 6105 . . . . . 6  |-  ( t  =  y  ->  ( C  x.  ( exp `  ( K  x.  t
) ) )  =  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
54cbvmptv 4381 . . . . 5  |-  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t )
) ) )  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
61, 5eqtri 2461 . . . 4  |-  Y  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
76oveq2i 6100 . . 3  |-  ( S  _D  Y )  =  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
8 expgrowthi.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
9 elpri 3895 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
10 eleq2 2502 . . . . . . . . . 10  |-  ( S  =  RR  ->  (
y  e.  S  <->  y  e.  RR ) )
11 recn 9370 . . . . . . . . . 10  |-  ( y  e.  RR  ->  y  e.  CC )
1210, 11syl6bi 228 . . . . . . . . 9  |-  ( S  =  RR  ->  (
y  e.  S  -> 
y  e.  CC ) )
13 eleq2 2502 . . . . . . . . . 10  |-  ( S  =  CC  ->  (
y  e.  S  <->  y  e.  CC ) )
1413biimpd 207 . . . . . . . . 9  |-  ( S  =  CC  ->  (
y  e.  S  -> 
y  e.  CC ) )
1512, 14jaoi 379 . . . . . . . 8  |-  ( ( S  =  RR  \/  S  =  CC )  ->  ( y  e.  S  ->  y  e.  CC ) )
168, 9, 153syl 20 . . . . . . 7  |-  ( ph  ->  ( y  e.  S  ->  y  e.  CC ) )
1716imp 429 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
18 expgrowthi.k . . . . . . . 8  |-  ( ph  ->  K  e.  CC )
19 mulcl 9364 . . . . . . . 8  |-  ( ( K  e.  CC  /\  y  e.  CC )  ->  ( K  x.  y
)  e.  CC )
2018, 19sylan 471 . . . . . . 7  |-  ( (
ph  /\  y  e.  CC )  ->  ( K  x.  y )  e.  CC )
21 efcl 13366 . . . . . . 7  |-  ( ( K  x.  y )  e.  CC  ->  ( exp `  ( K  x.  y ) )  e.  CC )
2220, 21syl 16 . . . . . 6  |-  ( (
ph  /\  y  e.  CC )  ->  ( exp `  ( K  x.  y
) )  e.  CC )
2317, 22syldan 470 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( K  x.  y ) )  e.  CC )
24 ovex 6114 . . . . . 6  |-  ( K  x.  ( exp `  ( K  x.  y )
) )  e.  _V
2524a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( K  x.  ( exp `  ( K  x.  y
) ) )  e. 
_V )
26 cnelprrecn 9373 . . . . . . . 8  |-  CC  e.  { RR ,  CC }
2726a1i 11 . . . . . . 7  |-  ( ph  ->  CC  e.  { RR ,  CC } )
2817, 20syldan 470 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  ( K  x.  y )  e.  CC )
2918adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  K  e.  CC )
30 efcl 13366 . . . . . . . 8  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
3130adantl 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( exp `  x )  e.  CC )
32 ax-1cn 9338 . . . . . . . . . 10  |-  1  e.  CC
3332a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  1  e.  CC )
348dvmptid 21429 . . . . . . . . 9  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  y ) )  =  ( y  e.  S  |->  1 ) )
358, 17, 33, 34, 18dvmptcmul 21436 . . . . . . . 8  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( K  x.  y ) ) )  =  ( y  e.  S  |->  ( K  x.  1 ) ) )
3618mulid1d 9401 . . . . . . . . 9  |-  ( ph  ->  ( K  x.  1 )  =  K )
3736mpteq2dv 4377 . . . . . . . 8  |-  ( ph  ->  ( y  e.  S  |->  ( K  x.  1 ) )  =  ( y  e.  S  |->  K ) )
3835, 37eqtrd 2473 . . . . . . 7  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( K  x.  y ) ) )  =  ( y  e.  S  |->  K ) )
39 dvef 21450 . . . . . . . . 9  |-  ( CC 
_D  exp )  =  exp
40 eff 13365 . . . . . . . . . . . 12  |-  exp : CC
--> CC
41 ffn 5557 . . . . . . . . . . . 12  |-  ( exp
: CC --> CC  ->  exp 
Fn  CC )
4240, 41ax-mp 5 . . . . . . . . . . 11  |-  exp  Fn  CC
43 dffn5 5735 . . . . . . . . . . 11  |-  ( exp 
Fn  CC  <->  exp  =  ( x  e.  CC  |->  ( exp `  x ) ) )
4442, 43mpbi 208 . . . . . . . . . 10  |-  exp  =  ( x  e.  CC  |->  ( exp `  x ) )
4544oveq2i 6100 . . . . . . . . 9  |-  ( CC 
_D  exp )  =  ( CC  _D  ( x  e.  CC  |->  ( exp `  x ) ) )
4639, 45, 443eqtr3i 2469 . . . . . . . 8  |-  ( CC 
_D  ( x  e.  CC  |->  ( exp `  x
) ) )  =  ( x  e.  CC  |->  ( exp `  x ) )
4746a1i 11 . . . . . . 7  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( exp `  x ) ) )  =  ( x  e.  CC  |->  ( exp `  x ) ) )
48 fveq2 5689 . . . . . . 7  |-  ( x  =  ( K  x.  y )  ->  ( exp `  x )  =  ( exp `  ( K  x.  y )
) )
498, 27, 28, 29, 31, 31, 38, 47, 48, 48dvmptco 21444 . . . . . 6  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( exp `  ( K  x.  y ) ) ) )  =  ( y  e.  S  |->  ( ( exp `  ( K  x.  y )
)  x.  K ) ) )
50 mulcom 9366 . . . . . . . . 9  |-  ( ( ( exp `  ( K  x.  y )
)  e.  CC  /\  K  e.  CC )  ->  ( ( exp `  ( K  x.  y )
)  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y ) ) ) )
5123, 18, 50syl2anr 478 . . . . . . . 8  |-  ( (
ph  /\  ( ph  /\  y  e.  S ) )  ->  ( ( exp `  ( K  x.  y ) )  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y
) ) ) )
5251anabss5 812 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  ( K  x.  y )
)  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y ) ) ) )
5352mpteq2dva 4376 . . . . . 6  |-  ( ph  ->  ( y  e.  S  |->  ( ( exp `  ( K  x.  y )
)  x.  K ) )  =  ( y  e.  S  |->  ( K  x.  ( exp `  ( K  x.  y )
) ) ) )
5449, 53eqtrd 2473 . . . . 5  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( exp `  ( K  x.  y ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( exp `  ( K  x.  y
) ) ) ) )
55 expgrowthi.y0 . . . . 5  |-  ( ph  ->  C  e.  CC )
568, 23, 25, 54, 55dvmptcmul 21436 . . . 4  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
5755, 18, 233anim123i 1173 . . . . . . . 8  |-  ( (
ph  /\  ph  /\  ( ph  /\  y  e.  S
) )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
58573anidm12 1275 . . . . . . 7  |-  ( (
ph  /\  ( ph  /\  y  e.  S ) )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
5958anabss5 812 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
60 mul12 9533 . . . . . 6  |-  ( ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y ) )  e.  CC )  ->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y )
) ) )  =  ( K  x.  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
6159, 60syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y )
) ) )  =  ( K  x.  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
6261mpteq2dva 4376 . . . 4  |-  ( ph  ->  ( y  e.  S  |->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
6356, 62eqtrd 2473 . . 3  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
647, 63syl5eq 2485 . 2  |-  ( ph  ->  ( S  _D  Y
)  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
65 ovex 6114 . . . 4  |-  ( C  x.  ( exp `  ( K  x.  y )
) )  e.  _V
6665a1i 11 . . 3  |-  ( (
ph  /\  y  e.  S )  ->  ( C  x.  ( exp `  ( K  x.  y
) ) )  e. 
_V )
67 fconstmpt 4880 . . . 4  |-  ( S  X.  { K }
)  =  ( y  e.  S  |->  K )
6867a1i 11 . . 3  |-  ( ph  ->  ( S  X.  { K } )  =  ( y  e.  S  |->  K ) )
696a1i 11 . . 3  |-  ( ph  ->  Y  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y )
) ) ) )
708, 29, 66, 68, 69offval2 6334 . 2  |-  ( ph  ->  ( ( S  X.  { K } )  oF  x.  Y )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
7164, 70eqtr4d 2476 1  |-  ( ph  ->  ( S  _D  Y
)  =  ( ( S  X.  { K } )  oF  x.  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2970   {csn 3875   {cpr 3877    e. cmpt 4348    X. cxp 4836    Fn wfn 5411   -->wf 5412   ` cfv 5416  (class class class)co 6089    oFcof 6316   CCcc 9278   RRcr 9279   1c1 9281    x. cmul 9285   expce 13345    _D cdv 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358  ax-addf 9359  ax-mulf 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-of 6318  df-om 6475  df-1st 6575  df-2nd 6576  df-supp 6689  df-recs 6830  df-rdg 6864  df-1o 6918  df-2o 6919  df-oadd 6922  df-er 7099  df-map 7214  df-pm 7215  df-ixp 7262  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-fsupp 7619  df-fi 7659  df-sup 7689  df-oi 7722  df-card 8107  df-cda 8335  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-7 10383  df-8 10384  df-9 10385  df-10 10386  df-n0 10578  df-z 10645  df-dec 10754  df-uz 10860  df-q 10952  df-rp 10990  df-xneg 11087  df-xadd 11088  df-xmul 11089  df-ico 11304  df-icc 11305  df-fz 11436  df-fzo 11547  df-fl 11640  df-seq 11805  df-exp 11864  df-fac 12050  df-bc 12077  df-hash 12102  df-shft 12554  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-limsup 12947  df-clim 12964  df-rlim 12965  df-sum 13162  df-ef 13351  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-starv 14251  df-sca 14252  df-vsca 14253  df-ip 14254  df-tset 14255  df-ple 14256  df-ds 14258  df-unif 14259  df-hom 14260  df-cco 14261  df-rest 14359  df-topn 14360  df-0g 14378  df-gsum 14379  df-topgen 14380  df-pt 14381  df-prds 14384  df-xrs 14438  df-qtop 14443  df-imas 14444  df-xps 14446  df-mre 14522  df-mrc 14523  df-acs 14525  df-mnd 15413  df-submnd 15463  df-mulg 15546  df-cntz 15833  df-cmn 16277  df-psmet 17807  df-xmet 17808  df-met 17809  df-bl 17810  df-mopn 17811  df-fbas 17812  df-fg 17813  df-cnfld 17817  df-top 18501  df-bases 18503  df-topon 18504  df-topsp 18505  df-cld 18621  df-ntr 18622  df-cls 18623  df-nei 18700  df-lp 18738  df-perf 18739  df-cn 18829  df-cnp 18830  df-haus 18917  df-tx 19133  df-hmeo 19326  df-fil 19417  df-fm 19509  df-flim 19510  df-flf 19511  df-xms 19893  df-ms 19894  df-tms 19895  df-cncf 20452  df-limc 21339  df-dv 21340
This theorem is referenced by:  expgrowth  29606
  Copyright terms: Public domain W3C validator