Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowthi Structured version   Unicode version

Theorem expgrowthi 36319
Description: Exponential growth and decay model. See expgrowth 36321 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Hypotheses
Ref Expression
expgrowthi.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
expgrowthi.k  |-  ( ph  ->  K  e.  CC )
expgrowthi.y0  |-  ( ph  ->  C  e.  CC )
expgrowthi.yt  |-  Y  =  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t ) ) ) )
Assertion
Ref Expression
expgrowthi  |-  ( ph  ->  ( S  _D  Y
)  =  ( ( S  X.  { K } )  oF  x.  Y ) )
Distinct variable groups:    t, C    t, K    t, S
Allowed substitution hints:    ph( t)    Y( t)

Proof of Theorem expgrowthi
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowthi.yt . . . . 5  |-  Y  =  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t ) ) ) )
2 oveq2 6313 . . . . . . . 8  |-  ( t  =  y  ->  ( K  x.  t )  =  ( K  x.  y ) )
32fveq2d 5885 . . . . . . 7  |-  ( t  =  y  ->  ( exp `  ( K  x.  t ) )  =  ( exp `  ( K  x.  y )
) )
43oveq2d 6321 . . . . . 6  |-  ( t  =  y  ->  ( C  x.  ( exp `  ( K  x.  t
) ) )  =  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
54cbvmptv 4518 . . . . 5  |-  ( t  e.  S  |->  ( C  x.  ( exp `  ( K  x.  t )
) ) )  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
61, 5eqtri 2458 . . . 4  |-  Y  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y ) ) ) )
76oveq2i 6316 . . 3  |-  ( S  _D  Y )  =  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
8 expgrowthi.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
9 elpri 4022 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
10 eleq2 2502 . . . . . . . . . 10  |-  ( S  =  RR  ->  (
y  e.  S  <->  y  e.  RR ) )
11 recn 9628 . . . . . . . . . 10  |-  ( y  e.  RR  ->  y  e.  CC )
1210, 11syl6bi 231 . . . . . . . . 9  |-  ( S  =  RR  ->  (
y  e.  S  -> 
y  e.  CC ) )
13 eleq2 2502 . . . . . . . . . 10  |-  ( S  =  CC  ->  (
y  e.  S  <->  y  e.  CC ) )
1413biimpd 210 . . . . . . . . 9  |-  ( S  =  CC  ->  (
y  e.  S  -> 
y  e.  CC ) )
1512, 14jaoi 380 . . . . . . . 8  |-  ( ( S  =  RR  \/  S  =  CC )  ->  ( y  e.  S  ->  y  e.  CC ) )
168, 9, 153syl 18 . . . . . . 7  |-  ( ph  ->  ( y  e.  S  ->  y  e.  CC ) )
1716imp 430 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
18 expgrowthi.k . . . . . . . 8  |-  ( ph  ->  K  e.  CC )
19 mulcl 9622 . . . . . . . 8  |-  ( ( K  e.  CC  /\  y  e.  CC )  ->  ( K  x.  y
)  e.  CC )
2018, 19sylan 473 . . . . . . 7  |-  ( (
ph  /\  y  e.  CC )  ->  ( K  x.  y )  e.  CC )
21 efcl 14115 . . . . . . 7  |-  ( ( K  x.  y )  e.  CC  ->  ( exp `  ( K  x.  y ) )  e.  CC )
2220, 21syl 17 . . . . . 6  |-  ( (
ph  /\  y  e.  CC )  ->  ( exp `  ( K  x.  y
) )  e.  CC )
2317, 22syldan 472 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( K  x.  y ) )  e.  CC )
24 ovex 6333 . . . . . 6  |-  ( K  x.  ( exp `  ( K  x.  y )
) )  e.  _V
2524a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( K  x.  ( exp `  ( K  x.  y
) ) )  e. 
_V )
26 cnelprrecn 9631 . . . . . . . 8  |-  CC  e.  { RR ,  CC }
2726a1i 11 . . . . . . 7  |-  ( ph  ->  CC  e.  { RR ,  CC } )
2817, 20syldan 472 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  ( K  x.  y )  e.  CC )
2918adantr 466 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  K  e.  CC )
30 efcl 14115 . . . . . . . 8  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
3130adantl 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( exp `  x )  e.  CC )
32 1cnd 9658 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  1  e.  CC )
338dvmptid 22788 . . . . . . . . 9  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  y ) )  =  ( y  e.  S  |->  1 ) )
348, 17, 32, 33, 18dvmptcmul 22795 . . . . . . . 8  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( K  x.  y ) ) )  =  ( y  e.  S  |->  ( K  x.  1 ) ) )
3518mulid1d 9659 . . . . . . . . 9  |-  ( ph  ->  ( K  x.  1 )  =  K )
3635mpteq2dv 4513 . . . . . . . 8  |-  ( ph  ->  ( y  e.  S  |->  ( K  x.  1 ) )  =  ( y  e.  S  |->  K ) )
3734, 36eqtrd 2470 . . . . . . 7  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( K  x.  y ) ) )  =  ( y  e.  S  |->  K ) )
38 dvef 22809 . . . . . . . . 9  |-  ( CC 
_D  exp )  =  exp
39 eff 14114 . . . . . . . . . . . 12  |-  exp : CC
--> CC
40 ffn 5746 . . . . . . . . . . . 12  |-  ( exp
: CC --> CC  ->  exp 
Fn  CC )
4139, 40ax-mp 5 . . . . . . . . . . 11  |-  exp  Fn  CC
42 dffn5 5926 . . . . . . . . . . 11  |-  ( exp 
Fn  CC  <->  exp  =  ( x  e.  CC  |->  ( exp `  x ) ) )
4341, 42mpbi 211 . . . . . . . . . 10  |-  exp  =  ( x  e.  CC  |->  ( exp `  x ) )
4443oveq2i 6316 . . . . . . . . 9  |-  ( CC 
_D  exp )  =  ( CC  _D  ( x  e.  CC  |->  ( exp `  x ) ) )
4538, 44, 433eqtr3i 2466 . . . . . . . 8  |-  ( CC 
_D  ( x  e.  CC  |->  ( exp `  x
) ) )  =  ( x  e.  CC  |->  ( exp `  x ) )
4645a1i 11 . . . . . . 7  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( exp `  x ) ) )  =  ( x  e.  CC  |->  ( exp `  x ) ) )
47 fveq2 5881 . . . . . . 7  |-  ( x  =  ( K  x.  y )  ->  ( exp `  x )  =  ( exp `  ( K  x.  y )
) )
488, 27, 28, 29, 31, 31, 37, 46, 47, 47dvmptco 22803 . . . . . 6  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( exp `  ( K  x.  y ) ) ) )  =  ( y  e.  S  |->  ( ( exp `  ( K  x.  y )
)  x.  K ) ) )
49 mulcom 9624 . . . . . . . . 9  |-  ( ( ( exp `  ( K  x.  y )
)  e.  CC  /\  K  e.  CC )  ->  ( ( exp `  ( K  x.  y )
)  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y ) ) ) )
5023, 18, 49syl2anr 480 . . . . . . . 8  |-  ( (
ph  /\  ( ph  /\  y  e.  S ) )  ->  ( ( exp `  ( K  x.  y ) )  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y
) ) ) )
5150anabss5 823 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  ( K  x.  y )
)  x.  K )  =  ( K  x.  ( exp `  ( K  x.  y ) ) ) )
5251mpteq2dva 4512 . . . . . 6  |-  ( ph  ->  ( y  e.  S  |->  ( ( exp `  ( K  x.  y )
)  x.  K ) )  =  ( y  e.  S  |->  ( K  x.  ( exp `  ( K  x.  y )
) ) ) )
5348, 52eqtrd 2470 . . . . 5  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( exp `  ( K  x.  y ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( exp `  ( K  x.  y
) ) ) ) )
54 expgrowthi.y0 . . . . 5  |-  ( ph  ->  C  e.  CC )
558, 23, 25, 53, 54dvmptcmul 22795 . . . 4  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
5654, 18, 233anim123i 1190 . . . . . . . 8  |-  ( (
ph  /\  ph  /\  ( ph  /\  y  e.  S
) )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
57563anidm12 1321 . . . . . . 7  |-  ( (
ph  /\  ( ph  /\  y  e.  S ) )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
5857anabss5 823 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y
) )  e.  CC ) )
59 mul12 9798 . . . . . 6  |-  ( ( C  e.  CC  /\  K  e.  CC  /\  ( exp `  ( K  x.  y ) )  e.  CC )  ->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y )
) ) )  =  ( K  x.  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
6058, 59syl 17 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y )
) ) )  =  ( K  x.  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )
6160mpteq2dva 4512 . . . 4  |-  ( ph  ->  ( y  e.  S  |->  ( C  x.  ( K  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
6255, 61eqtrd 2470 . . 3  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y
) ) ) ) )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
637, 62syl5eq 2482 . 2  |-  ( ph  ->  ( S  _D  Y
)  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
64 ovex 6333 . . . 4  |-  ( C  x.  ( exp `  ( K  x.  y )
) )  e.  _V
6564a1i 11 . . 3  |-  ( (
ph  /\  y  e.  S )  ->  ( C  x.  ( exp `  ( K  x.  y
) ) )  e. 
_V )
66 fconstmpt 4898 . . . 4  |-  ( S  X.  { K }
)  =  ( y  e.  S  |->  K )
6766a1i 11 . . 3  |-  ( ph  ->  ( S  X.  { K } )  =  ( y  e.  S  |->  K ) )
686a1i 11 . . 3  |-  ( ph  ->  Y  =  ( y  e.  S  |->  ( C  x.  ( exp `  ( K  x.  y )
) ) ) )
698, 29, 65, 67, 68offval2 6562 . 2  |-  ( ph  ->  ( ( S  X.  { K } )  oF  x.  Y )  =  ( y  e.  S  |->  ( K  x.  ( C  x.  ( exp `  ( K  x.  y ) ) ) ) ) )
7063, 69eqtr4d 2473 1  |-  ( ph  ->  ( S  _D  Y
)  =  ( ( S  X.  { K } )  oF  x.  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   _Vcvv 3087   {csn 4002   {cpr 4004    |-> cmpt 4484    X. cxp 4852    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305    oFcof 6543   CCcc 9536   RRcr 9537   1c1 9539    x. cmul 9543   expce 14092    _D cdv 22695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699
This theorem is referenced by:  expgrowth  36321
  Copyright terms: Public domain W3C validator