MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge1 Structured version   Unicode version

Theorem expge1 12021
Description: Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  1  <_  ( A ^ N
) )

Proof of Theorem expge1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4407 . . . . . 6  |-  ( z  =  A  ->  (
1  <_  z  <->  1  <_  A ) )
21elrab 3224 . . . . 5  |-  ( A  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( A  e.  RR  /\  1  <_  A ) )
3 ssrab2 3548 . . . . . . 7  |-  { z  e.  RR  |  1  <_  z }  C_  RR
4 ax-resscn 9453 . . . . . . 7  |-  RR  C_  CC
53, 4sstri 3476 . . . . . 6  |-  { z  e.  RR  |  1  <_  z }  C_  CC
6 breq2 4407 . . . . . . . 8  |-  ( z  =  x  ->  (
1  <_  z  <->  1  <_  x ) )
76elrab 3224 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( x  e.  RR  /\  1  <_  x ) )
8 breq2 4407 . . . . . . . 8  |-  ( z  =  y  ->  (
1  <_  z  <->  1  <_  y ) )
98elrab 3224 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( y  e.  RR  /\  1  <_ 
y ) )
10 remulcl 9481 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
1110ad2ant2r 746 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( x  x.  y )  e.  RR )
12 1t1e1 10583 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
13 1re 9499 . . . . . . . . . . . . . 14  |-  1  e.  RR
14 0le1 9977 . . . . . . . . . . . . . 14  |-  0  <_  1
1513, 14pm3.2i 455 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  /\  0  <_  1 )
1615jctl 541 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  x  e.  RR ) )
1715jctl 541 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  y  e.  RR ) )
18 lemul12a 10301 . . . . . . . . . . . 12  |-  ( ( ( ( 1  e.  RR  /\  0  <_ 
1 )  /\  x  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  y  e.  RR ) )  ->  (
( 1  <_  x  /\  1  <_  y )  ->  ( 1  x.  1 )  <_  (
x  x.  y ) ) )
1916, 17, 18syl2an 477 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( 1  <_  x  /\  1  <_  y
)  ->  ( 1  x.  1 )  <_ 
( x  x.  y
) ) )
2019imp 429 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( 1  <_  x  /\  1  <_  y
) )  ->  (
1  x.  1 )  <_  ( x  x.  y ) )
2112, 20syl5eqbrr 4437 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( 1  <_  x  /\  1  <_  y
) )  ->  1  <_  ( x  x.  y
) )
2221an4s 822 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  <_  ( x  x.  y ) )
23 breq2 4407 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  (
1  <_  z  <->  1  <_  ( x  x.  y ) ) )
2423elrab 3224 . . . . . . . 8  |-  ( ( x  x.  y )  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( (
x  x.  y )  e.  RR  /\  1  <_  ( x  x.  y
) ) )
2511, 22, 24sylanbrc 664 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( x  x.  y )  e.  {
z  e.  RR  | 
1  <_  z }
)
267, 9, 25syl2anb 479 . . . . . 6  |-  ( ( x  e.  { z  e.  RR  |  1  <_  z }  /\  y  e.  { z  e.  RR  |  1  <_ 
z } )  -> 
( x  x.  y
)  e.  { z  e.  RR  |  1  <_  z } )
27 1le1 10078 . . . . . . 7  |-  1  <_  1
28 breq2 4407 . . . . . . . 8  |-  ( z  =  1  ->  (
1  <_  z  <->  1  <_  1 ) )
2928elrab 3224 . . . . . . 7  |-  ( 1  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( 1  e.  RR  /\  1  <_  1 ) )
3013, 27, 29mpbir2an 911 . . . . . 6  |-  1  e.  { z  e.  RR  |  1  <_  z }
315, 26, 30expcllem 11996 . . . . 5  |-  ( ( A  e.  { z  e.  RR  |  1  <_  z }  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  { z  e.  RR  |  1  <_  z } )
322, 31sylanbr 473 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  {
z  e.  RR  | 
1  <_  z }
)
33323impa 1183 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  NN0 )  ->  ( A ^ N )  e. 
{ z  e.  RR  |  1  <_  z } )
34333com23 1194 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  ( A ^ N )  e. 
{ z  e.  RR  |  1  <_  z } )
35 breq2 4407 . . . 4  |-  ( z  =  ( A ^ N )  ->  (
1  <_  z  <->  1  <_  ( A ^ N ) ) )
3635elrab 3224 . . 3  |-  ( ( A ^ N )  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( ( A ^ N )  e.  RR  /\  1  <_ 
( A ^ N
) ) )
3736simprbi 464 . 2  |-  ( ( A ^ N )  e.  { z  e.  RR  |  1  <_ 
z }  ->  1  <_  ( A ^ N
) )
3834, 37syl 16 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  1  <_  ( A ^ N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    e. wcel 1758   {crab 2803   class class class wbr 4403  (class class class)co 6203   CCcc 9394   RRcr 9395   0cc0 9396   1c1 9397    x. cmul 9401    <_ cle 9533   NN0cn0 10693   ^cexp 11985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-n0 10694  df-z 10761  df-uz 10976  df-seq 11927  df-exp 11986
This theorem is referenced by:  expgt1  12022  leexp2a  12039  expge1d  12147
  Copyright terms: Public domain W3C validator