MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge1 Structured version   Unicode version

Theorem expge1 12188
Description: Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  1  <_  ( A ^ N
) )

Proof of Theorem expge1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4443 . . . . . 6  |-  ( z  =  A  ->  (
1  <_  z  <->  1  <_  A ) )
21elrab 3254 . . . . 5  |-  ( A  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( A  e.  RR  /\  1  <_  A ) )
3 ssrab2 3571 . . . . . . 7  |-  { z  e.  RR  |  1  <_  z }  C_  RR
4 ax-resscn 9538 . . . . . . 7  |-  RR  C_  CC
53, 4sstri 3498 . . . . . 6  |-  { z  e.  RR  |  1  <_  z }  C_  CC
6 breq2 4443 . . . . . . . 8  |-  ( z  =  x  ->  (
1  <_  z  <->  1  <_  x ) )
76elrab 3254 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( x  e.  RR  /\  1  <_  x ) )
8 breq2 4443 . . . . . . . 8  |-  ( z  =  y  ->  (
1  <_  z  <->  1  <_  y ) )
98elrab 3254 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( y  e.  RR  /\  1  <_ 
y ) )
10 remulcl 9566 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
1110ad2ant2r 744 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( x  x.  y )  e.  RR )
12 1t1e1 10679 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
13 1re 9584 . . . . . . . . . . . . . 14  |-  1  e.  RR
14 0le1 10072 . . . . . . . . . . . . . 14  |-  0  <_  1
1513, 14pm3.2i 453 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  /\  0  <_  1 )
1615jctl 539 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  x  e.  RR ) )
1715jctl 539 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  y  e.  RR ) )
18 lemul12a 10396 . . . . . . . . . . . 12  |-  ( ( ( ( 1  e.  RR  /\  0  <_ 
1 )  /\  x  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  y  e.  RR ) )  ->  (
( 1  <_  x  /\  1  <_  y )  ->  ( 1  x.  1 )  <_  (
x  x.  y ) ) )
1916, 17, 18syl2an 475 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( 1  <_  x  /\  1  <_  y
)  ->  ( 1  x.  1 )  <_ 
( x  x.  y
) ) )
2019imp 427 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( 1  <_  x  /\  1  <_  y
) )  ->  (
1  x.  1 )  <_  ( x  x.  y ) )
2112, 20syl5eqbrr 4473 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( 1  <_  x  /\  1  <_  y
) )  ->  1  <_  ( x  x.  y
) )
2221an4s 824 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  <_  ( x  x.  y ) )
23 breq2 4443 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  (
1  <_  z  <->  1  <_  ( x  x.  y ) ) )
2423elrab 3254 . . . . . . . 8  |-  ( ( x  x.  y )  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( (
x  x.  y )  e.  RR  /\  1  <_  ( x  x.  y
) ) )
2511, 22, 24sylanbrc 662 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( x  x.  y )  e.  {
z  e.  RR  | 
1  <_  z }
)
267, 9, 25syl2anb 477 . . . . . 6  |-  ( ( x  e.  { z  e.  RR  |  1  <_  z }  /\  y  e.  { z  e.  RR  |  1  <_ 
z } )  -> 
( x  x.  y
)  e.  { z  e.  RR  |  1  <_  z } )
27 1le1 10173 . . . . . . 7  |-  1  <_  1
28 breq2 4443 . . . . . . . 8  |-  ( z  =  1  ->  (
1  <_  z  <->  1  <_  1 ) )
2928elrab 3254 . . . . . . 7  |-  ( 1  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( 1  e.  RR  /\  1  <_  1 ) )
3013, 27, 29mpbir2an 918 . . . . . 6  |-  1  e.  { z  e.  RR  |  1  <_  z }
315, 26, 30expcllem 12162 . . . . 5  |-  ( ( A  e.  { z  e.  RR  |  1  <_  z }  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  { z  e.  RR  |  1  <_  z } )
322, 31sylanbr 471 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  {
z  e.  RR  | 
1  <_  z }
)
33323impa 1189 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  NN0 )  ->  ( A ^ N )  e. 
{ z  e.  RR  |  1  <_  z } )
34333com23 1200 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  ( A ^ N )  e. 
{ z  e.  RR  |  1  <_  z } )
35 breq2 4443 . . . 4  |-  ( z  =  ( A ^ N )  ->  (
1  <_  z  <->  1  <_  ( A ^ N ) ) )
3635elrab 3254 . . 3  |-  ( ( A ^ N )  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( ( A ^ N )  e.  RR  /\  1  <_ 
( A ^ N
) ) )
3736simprbi 462 . 2  |-  ( ( A ^ N )  e.  { z  e.  RR  |  1  <_ 
z }  ->  1  <_  ( A ^ N
) )
3834, 37syl 16 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  1  <_  ( A ^ N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    e. wcel 1823   {crab 2808   class class class wbr 4439  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    <_ cle 9618   NN0cn0 10791   ^cexp 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-seq 12093  df-exp 12152
This theorem is referenced by:  expgt1  12189  leexp2a  12206  expge1d  12314
  Copyright terms: Public domain W3C validator