Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdioph Structured version   Unicode version

Theorem expdioph 29370
Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdioph  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  e.  (Dioph `  3 )

Proof of Theorem expdioph
StepHypRef Expression
1 pm4.42 951 . . . 4  |-  ( ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  ( a `  2
)  e.  NN )  \/  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  /\  -.  (
a `  2 )  e.  NN ) ) )
2 ancom 450 . . . . . 6  |-  ( ( ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  ( a `  2
)  e.  NN )  <-> 
( ( a ` 
2 )  e.  NN  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )
3 elmapi 7233 . . . . . . . . . . . . 13  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  a : ( 1 ... 3 ) --> NN0 )
4 df-2 10379 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
5 df-3 10380 . . . . . . . . . . . . . . . 16  |-  3  =  ( 2  +  1 )
6 ssid 3374 . . . . . . . . . . . . . . . 16  |-  ( 1 ... 3 )  C_  ( 1 ... 3
)
75, 6jm2.27dlem5 29360 . . . . . . . . . . . . . . 15  |-  ( 1 ... 2 )  C_  ( 1 ... 3
)
84, 7jm2.27dlem5 29360 . . . . . . . . . . . . . 14  |-  ( 1 ... 1 )  C_  ( 1 ... 3
)
9 1nn 10332 . . . . . . . . . . . . . . 15  |-  1  e.  NN
109jm2.27dlem3 29358 . . . . . . . . . . . . . 14  |-  1  e.  ( 1 ... 1
)
118, 10sselii 3352 . . . . . . . . . . . . 13  |-  1  e.  ( 1 ... 3
)
12 ffvelrn 5840 . . . . . . . . . . . . 13  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  1  e.  ( 1 ... 3 ) )  ->  ( a `  1 )  e. 
NN0 )
133, 11, 12sylancl 662 . . . . . . . . . . . 12  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  1 )  e.  NN0 )
1413adantr 465 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( a ` 
1 )  e.  NN0 )
15 elnn0 10580 . . . . . . . . . . 11  |-  ( ( a `  1 )  e.  NN0  <->  ( ( a `
 1 )  e.  NN  \/  ( a `
 1 )  =  0 ) )
1614, 15sylib 196 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  e.  NN  \/  ( a `
 1 )  =  0 ) )
17 elnn1uz2 10930 . . . . . . . . . . . 12  |-  ( ( a `  1 )  e.  NN  <->  ( (
a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
) )
1817biimpi 194 . . . . . . . . . . 11  |-  ( ( a `  1 )  e.  NN  ->  (
( a `  1
)  =  1  \/  ( a `  1
)  e.  ( ZZ>= ` 
2 ) ) )
1918orim1i 517 . . . . . . . . . 10  |-  ( ( ( a `  1
)  e.  NN  \/  ( a `  1
)  =  0 )  ->  ( ( ( a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 ) )
2016, 19syl 16 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 ) )
2120biantrurd 508 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  <->  ( ( ( ( a `  1
)  =  1  \/  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  \/  ( a `  1
)  =  0 )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) )
22 andir 863 . . . . . . . . . 10  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
23 andir 863 . . . . . . . . . . 11  |-  ( ( ( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  <->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  \/  ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) ) )
2423orbi1i 520 . . . . . . . . . 10  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  <->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  \/  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  \/  ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
2522, 24bitri 249 . . . . . . . . 9  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )  \/  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) )
26 nnz 10667 . . . . . . . . . . . . . . . 16  |-  ( ( a `  2 )  e.  NN  ->  (
a `  2 )  e.  ZZ )
27 1exp 11892 . . . . . . . . . . . . . . . 16  |-  ( ( a `  2 )  e.  ZZ  ->  (
1 ^ ( a `
 2 ) )  =  1 )
2826, 27syl 16 . . . . . . . . . . . . . . 15  |-  ( ( a `  2 )  e.  NN  ->  (
1 ^ ( a `
 2 ) )  =  1 )
2928adantl 466 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( 1 ^ ( a `  2
) )  =  1 )
3029eqeq2d 2453 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( 1 ^ (
a `  2 )
)  <->  ( a ` 
3 )  =  1 ) )
31 oveq1 6097 . . . . . . . . . . . . . . 15  |-  ( ( a `  1 )  =  1  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( 1 ^ ( a `  2
) ) )
3231eqeq2d 2453 . . . . . . . . . . . . . 14  |-  ( ( a `  1 )  =  1  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( 1 ^ (
a `  2 )
) ) )
3332bibi1d 319 . . . . . . . . . . . . 13  |-  ( ( a `  1 )  =  1  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 )  <-> 
( ( a ` 
3 )  =  ( 1 ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 ) ) )
3430, 33syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  =  1  ->  ( (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( a `  3 )  =  1 ) ) )
3534pm5.32d 639 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
a `  1 )  =  1  /\  (
a `  3 )  =  1 ) ) )
36 iba 503 . . . . . . . . . . . . 13  |-  ( ( a `  2 )  e.  NN  ->  (
( a `  1
)  e.  ( ZZ>= ` 
2 )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN ) ) )
3736adantl 466 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  <->  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN ) ) )
3837anbi1d 704 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
3935, 38orbi12d 709 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  \/  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  <->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) ) )
40 0exp 11898 . . . . . . . . . . . . . 14  |-  ( ( a `  2 )  e.  NN  ->  (
0 ^ ( a `
 2 ) )  =  0 )
4140adantl 466 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( 0 ^ ( a `  2
) )  =  0 )
4241eqeq2d 2453 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( 0 ^ (
a `  2 )
)  <->  ( a ` 
3 )  =  0 ) )
43 oveq1 6097 . . . . . . . . . . . . . 14  |-  ( ( a `  1 )  =  0  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( 0 ^ ( a `  2
) ) )
4443eqeq2d 2453 . . . . . . . . . . . . 13  |-  ( ( a `  1 )  =  0  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( 0 ^ (
a `  2 )
) ) )
4544bibi1d 319 . . . . . . . . . . . 12  |-  ( ( a `  1 )  =  0  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  0 )  <-> 
( ( a ` 
3 )  =  ( 0 ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  0 ) ) )
4642, 45syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  =  0  ->  ( (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( a `  3 )  =  0 ) ) )
4746pm5.32d 639 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
a `  1 )  =  0  /\  (
a `  3 )  =  0 ) ) )
4839, 47orbi12d 709 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )  \/  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
4925, 48syl5bb 257 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  \/  ( a ` 
1 )  =  0 )  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
5021, 49bitrd 253 . . . . . . 7  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  <->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
5150pm5.32da 641 . . . . . 6  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
2 )  e.  NN  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  <-> 
( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) ) )
522, 51syl5bb 257 . . . . 5  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  /\  ( a ` 
2 )  e.  NN ) 
<->  ( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) ) )
53 ancom 450 . . . . . 6  |-  ( ( ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  -.  ( a `  2
)  e.  NN )  <-> 
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )
54 2nn 10478 . . . . . . . . . . . 12  |-  2  e.  NN
5554jm2.27dlem3 29358 . . . . . . . . . . 11  |-  2  e.  ( 1 ... 2
)
567, 55sselii 3352 . . . . . . . . . 10  |-  2  e.  ( 1 ... 3
)
57 ffvelrn 5840 . . . . . . . . . 10  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  2  e.  ( 1 ... 3 ) )  ->  ( a `  2 )  e. 
NN0 )
583, 56, 57sylancl 662 . . . . . . . . 9  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  2 )  e.  NN0 )
59 elnn0 10580 . . . . . . . . . . 11  |-  ( ( a `  2 )  e.  NN0  <->  ( ( a `
 2 )  e.  NN  \/  ( a `
 2 )  =  0 ) )
60 pm2.53 373 . . . . . . . . . . 11  |-  ( ( ( a `  2
)  e.  NN  \/  ( a `  2
)  =  0 )  ->  ( -.  (
a `  2 )  e.  NN  ->  ( a `  2 )  =  0 ) )
6159, 60sylbi 195 . . . . . . . . . 10  |-  ( ( a `  2 )  e.  NN0  ->  ( -.  ( a `  2
)  e.  NN  ->  ( a `  2 )  =  0 ) )
62 0nnn 10352 . . . . . . . . . . 11  |-  -.  0  e.  NN
63 eleq1 2502 . . . . . . . . . . 11  |-  ( ( a `  2 )  =  0  ->  (
( a `  2
)  e.  NN  <->  0  e.  NN ) )
6462, 63mtbiri 303 . . . . . . . . . 10  |-  ( ( a `  2 )  =  0  ->  -.  ( a `  2
)  e.  NN )
6561, 64impbid1 203 . . . . . . . . 9  |-  ( ( a `  2 )  e.  NN0  ->  ( -.  ( a `  2
)  e.  NN  <->  ( a `  2 )  =  0 ) )
6658, 65syl 16 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  ( -.  ( a `  2
)  e.  NN  <->  ( a `  2 )  =  0 ) )
6766anbi1d 704 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
6813nn0cnd 10637 . . . . . . . . . . 11  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  1 )  e.  CC )
6968exp0d 12001 . . . . . . . . . 10  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  1
) ^ 0 )  =  1 )
7069eqeq2d 2453 . . . . . . . . 9  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ 0 )  <->  ( a `  3 )  =  1 ) )
71 oveq2 6098 . . . . . . . . . . 11  |-  ( ( a `  2 )  =  0  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( ( a `
 1 ) ^
0 ) )
7271eqeq2d 2453 . . . . . . . . . 10  |-  ( ( a `  2 )  =  0  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( ( a ` 
1 ) ^ 0 ) ) )
7372bibi1d 319 . . . . . . . . 9  |-  ( ( a `  2 )  =  0  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 )  <-> 
( ( a ` 
3 )  =  ( ( a `  1
) ^ 0 )  <-> 
( a `  3
)  =  1 ) ) )
7470, 73syl5ibrcom 222 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  2
)  =  0  -> 
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 ) ) )
7574pm5.32d 639 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
2 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  <->  ( ( a `
 2 )  =  0  /\  ( a `
 3 )  =  1 ) ) )
7667, 75bitrd 253 . . . . . 6  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  1 ) ) )
7753, 76syl5bb 257 . . . . 5  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  /\  -.  ( a `
 2 )  e.  NN )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  1 ) ) )
7852, 77orbi12d 709 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  /\  ( a `  2 )  e.  NN )  \/  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  -.  ( a `  2
)  e.  NN ) )  <->  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) ) )
791, 78syl5bb 257 . . 3  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( (
( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) ) )
8079rabbiia 2960 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  =  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }
81 3nn0 10596 . . . . 5  |-  3  e.  NN0
82 ovex 6115 . . . . . 6  |-  ( 1 ... 3 )  e. 
_V
83 mzpproj 29071 . . . . . 6  |-  ( ( ( 1 ... 3
)  e.  _V  /\  2  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
8482, 56, 83mp2an 672 . . . . 5  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 2 ) )  e.  (mzPoly `  (
1 ... 3 ) )
85 elnnrabdioph 29143 . . . . 5  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  e.  NN }  e.  (Dioph `  3
) )
8681, 84, 85mp2an 672 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  2 )  e.  NN }  e.  (Dioph `  3 )
87 mzpproj 29071 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  1  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
8882, 11, 87mp2an 672 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 1 ) )  e.  (mzPoly `  (
1 ... 3 ) )
89 1z 10675 . . . . . . . . 9  |-  1  e.  ZZ
90 mzpconstmpt 29074 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  1  e.  ZZ )  ->  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )
9182, 89, 90mp2an 672 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  1 )  e.  (mzPoly `  (
1 ... 3 ) )
92 eqrabdioph 29114 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) )  /\  (
a  e.  ( ZZ 
^m  ( 1 ... 3 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  1 }  e.  (Dioph ` 
3 ) )
9381, 88, 91, 92mp3an 1314 . . . . . . 7  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  1 )  =  1 }  e.  (Dioph `  3 )
94 3nn 10479 . . . . . . . . . 10  |-  3  e.  NN
9594jm2.27dlem3 29358 . . . . . . . . 9  |-  3  e.  ( 1 ... 3
)
96 mzpproj 29071 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  3  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
9782, 95, 96mp2an 672 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 3 ) )  e.  (mzPoly `  (
1 ... 3 ) )
98 eqrabdioph 29114 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) )  /\  (
a  e.  ( ZZ 
^m  ( 1 ... 3 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
3 )  =  1 }  e.  (Dioph ` 
3 ) )
9981, 97, 91, 98mp3an 1314 . . . . . . 7  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  1 }  e.  (Dioph `  3 )
100 anrabdioph 29117 . . . . . . 7  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  1 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  1 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 ) )
10193, 99, 100mp2an 672 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 )
102 expdiophlem2 29369 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) }  e.  (Dioph `  3 )
103 orrabdioph 29118 . . . . . 6  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 ) }  e.  (Dioph `  3 )  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) }  e.  (Dioph `  3 ) )
104101, 102, 103mp2an 672 . . . . 5  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) }  e.  (Dioph ` 
3 )
105 eq0rabdioph 29113 . . . . . . 7  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  0 }  e.  (Dioph ` 
3 ) )
10681, 88, 105mp2an 672 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  1 )  =  0 }  e.  (Dioph `  3 )
107 eq0rabdioph 29113 . . . . . . 7  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
3 )  =  0 }  e.  (Dioph ` 
3 ) )
10881, 97, 107mp2an 672 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  0 }  e.  (Dioph `  3 )
109 anrabdioph 29117 . . . . . 6  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  0 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  0 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) }  e.  (Dioph ` 
3 ) )
110106, 108, 109mp2an 672 . . . . 5  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) }  e.  (Dioph ` 
3 )
111 orrabdioph 29118 . . . . 5  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) }  e.  (Dioph `  3 )  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  0 ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) }  e.  (Dioph `  3
) )
112104, 110, 111mp2an 672 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) }  e.  (Dioph `  3 )
113 anrabdioph 29117 . . . 4  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  e.  NN }  e.  (Dioph `  3
)  /\  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) }  e.  (Dioph `  3 ) )
11486, 112, 113mp2an 672 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) }  e.  (Dioph `  3 )
115 eq0rabdioph 29113 . . . . 5  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  =  0 }  e.  (Dioph ` 
3 ) )
11681, 84, 115mp2an 672 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  2 )  =  0 }  e.  (Dioph `  3 )
117 anrabdioph 29117 . . . 4  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  =  0 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  1 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 ) )
118116, 99, 117mp2an 672 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 )
119 orrabdioph 29118 . . 3  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( a `
 2 )  e.  NN  /\  ( ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( a ` 
2 )  =  0  /\  ( a ` 
3 )  =  1 ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }  e.  (Dioph `  3 ) )
120114, 118, 119mp2an 672 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }  e.  (Dioph `  3 )
12180, 120eqeltri 2512 1  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  e.  (Dioph `  3 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   {crab 2718   _Vcvv 2971    e. cmpt 4349   -->wf 5413   ` cfv 5417  (class class class)co 6090    ^m cmap 7213   0cc0 9281   1c1 9282   NNcn 10321   2c2 10370   3c3 10371   NN0cn0 10578   ZZcz 10645   ZZ>=cuz 10860   ...cfz 11436   ^cexp 11864  mzPolycmzp 29056  Diophcdioph 29091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-inf2 7846  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359  ax-addf 9360  ax-mulf 9361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-iin 4173  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6831  df-rdg 6865  df-1o 6919  df-2o 6920  df-oadd 6923  df-omul 6924  df-er 7100  df-map 7215  df-pm 7216  df-ixp 7263  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-fsupp 7620  df-fi 7660  df-sup 7690  df-oi 7723  df-card 8108  df-acn 8111  df-cda 8336  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-7 10384  df-8 10385  df-9 10386  df-10 10387  df-n0 10579  df-z 10646  df-dec 10755  df-uz 10861  df-q 10953  df-rp 10991  df-xneg 11088  df-xadd 11089  df-xmul 11090  df-ioo 11303  df-ioc 11304  df-ico 11305  df-icc 11306  df-fz 11437  df-fzo 11548  df-fl 11641  df-mod 11708  df-seq 11806  df-exp 11865  df-fac 12051  df-bc 12078  df-hash 12103  df-shft 12555  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-limsup 12948  df-clim 12965  df-rlim 12966  df-sum 13163  df-ef 13352  df-sin 13354  df-cos 13355  df-pi 13357  df-dvds 13535  df-gcd 13690  df-prm 13763  df-numer 13812  df-denom 13813  df-struct 14175  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-starv 14252  df-sca 14253  df-vsca 14254  df-ip 14255  df-tset 14256  df-ple 14257  df-ds 14259  df-unif 14260  df-hom 14261  df-cco 14262  df-rest 14360  df-topn 14361  df-0g 14379  df-gsum 14380  df-topgen 14381  df-pt 14382  df-prds 14385  df-xrs 14439  df-qtop 14444  df-imas 14445  df-xps 14447  df-mre 14523  df-mrc 14524  df-acs 14526  df-mnd 15414  df-submnd 15464  df-mulg 15547  df-cntz 15834  df-cmn 16278  df-psmet 17808  df-xmet 17809  df-met 17810  df-bl 17811  df-mopn 17812  df-fbas 17813  df-fg 17814  df-cnfld 17818  df-top 18502  df-bases 18504  df-topon 18505  df-topsp 18506  df-cld 18622  df-ntr 18623  df-cls 18624  df-nei 18701  df-lp 18739  df-perf 18740  df-cn 18830  df-cnp 18831  df-haus 18918  df-tx 19134  df-hmeo 19327  df-fil 19418  df-fm 19510  df-flim 19511  df-flf 19512  df-xms 19894  df-ms 19895  df-tms 19896  df-cncf 20453  df-limc 21340  df-dv 21341  df-log 22007  df-mzpcl 29057  df-mzp 29058  df-dioph 29092  df-squarenn 29180  df-pell1qr 29181  df-pell14qr 29182  df-pell1234qr 29183  df-pellfund 29184  df-rmx 29241  df-rmy 29242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator