Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdioph Unicode version

Theorem expdioph 26984
Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdioph  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  e.  (Dioph `  3 )

Proof of Theorem expdioph
StepHypRef Expression
1 pm4.42 927 . . . 4  |-  ( ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  ( a `  2
)  e.  NN )  \/  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  /\  -.  (
a `  2 )  e.  NN ) ) )
2 ancom 438 . . . . . 6  |-  ( ( ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  ( a `  2
)  e.  NN )  <-> 
( ( a ` 
2 )  e.  NN  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )
3 elmapi 6997 . . . . . . . . . . . . 13  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  a : ( 1 ... 3 ) --> NN0 )
4 df-2 10014 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
5 df-3 10015 . . . . . . . . . . . . . . . 16  |-  3  =  ( 2  +  1 )
6 ssid 3327 . . . . . . . . . . . . . . . 16  |-  ( 1 ... 3 )  C_  ( 1 ... 3
)
75, 6jm2.27dlem5 26974 . . . . . . . . . . . . . . 15  |-  ( 1 ... 2 )  C_  ( 1 ... 3
)
84, 7jm2.27dlem5 26974 . . . . . . . . . . . . . 14  |-  ( 1 ... 1 )  C_  ( 1 ... 3
)
9 1nn 9967 . . . . . . . . . . . . . . 15  |-  1  e.  NN
109jm2.27dlem3 26972 . . . . . . . . . . . . . 14  |-  1  e.  ( 1 ... 1
)
118, 10sselii 3305 . . . . . . . . . . . . 13  |-  1  e.  ( 1 ... 3
)
12 ffvelrn 5827 . . . . . . . . . . . . 13  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  1  e.  ( 1 ... 3 ) )  ->  ( a `  1 )  e. 
NN0 )
133, 11, 12sylancl 644 . . . . . . . . . . . 12  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  1 )  e.  NN0 )
1413adantr 452 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( a ` 
1 )  e.  NN0 )
15 elnn0 10179 . . . . . . . . . . 11  |-  ( ( a `  1 )  e.  NN0  <->  ( ( a `
 1 )  e.  NN  \/  ( a `
 1 )  =  0 ) )
1614, 15sylib 189 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  e.  NN  \/  ( a `
 1 )  =  0 ) )
17 elnn1uz2 10508 . . . . . . . . . . . 12  |-  ( ( a `  1 )  e.  NN  <->  ( (
a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
) )
1817biimpi 187 . . . . . . . . . . 11  |-  ( ( a `  1 )  e.  NN  ->  (
( a `  1
)  =  1  \/  ( a `  1
)  e.  ( ZZ>= ` 
2 ) ) )
1918orim1i 504 . . . . . . . . . 10  |-  ( ( ( a `  1
)  e.  NN  \/  ( a `  1
)  =  0 )  ->  ( ( ( a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 ) )
2016, 19syl 16 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 ) )
2120biantrurd 495 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  <->  ( ( ( ( a `  1
)  =  1  \/  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  \/  ( a `  1
)  =  0 )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) )
22 andir 839 . . . . . . . . . 10  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
23 andir 839 . . . . . . . . . . 11  |-  ( ( ( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  <->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  \/  ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) ) )
2423orbi1i 507 . . . . . . . . . 10  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  <->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  \/  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  \/  ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
2522, 24bitri 241 . . . . . . . . 9  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )  \/  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) )
26 nnz 10259 . . . . . . . . . . . . . . . 16  |-  ( ( a `  2 )  e.  NN  ->  (
a `  2 )  e.  ZZ )
27 1exp 11364 . . . . . . . . . . . . . . . 16  |-  ( ( a `  2 )  e.  ZZ  ->  (
1 ^ ( a `
 2 ) )  =  1 )
2826, 27syl 16 . . . . . . . . . . . . . . 15  |-  ( ( a `  2 )  e.  NN  ->  (
1 ^ ( a `
 2 ) )  =  1 )
2928adantl 453 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( 1 ^ ( a `  2
) )  =  1 )
3029eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( 1 ^ (
a `  2 )
)  <->  ( a ` 
3 )  =  1 ) )
31 oveq1 6047 . . . . . . . . . . . . . . 15  |-  ( ( a `  1 )  =  1  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( 1 ^ ( a `  2
) ) )
3231eqeq2d 2415 . . . . . . . . . . . . . 14  |-  ( ( a `  1 )  =  1  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( 1 ^ (
a `  2 )
) ) )
3332bibi1d 311 . . . . . . . . . . . . 13  |-  ( ( a `  1 )  =  1  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 )  <-> 
( ( a ` 
3 )  =  ( 1 ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 ) ) )
3430, 33syl5ibrcom 214 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  =  1  ->  ( (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( a `  3 )  =  1 ) ) )
3534pm5.32d 621 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
a `  1 )  =  1  /\  (
a `  3 )  =  1 ) ) )
36 iba 490 . . . . . . . . . . . . 13  |-  ( ( a `  2 )  e.  NN  ->  (
( a `  1
)  e.  ( ZZ>= ` 
2 )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN ) ) )
3736adantl 453 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  <->  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN ) ) )
3837anbi1d 686 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
3935, 38orbi12d 691 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  \/  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  <->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) ) )
40 0exp 11370 . . . . . . . . . . . . . 14  |-  ( ( a `  2 )  e.  NN  ->  (
0 ^ ( a `
 2 ) )  =  0 )
4140adantl 453 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( 0 ^ ( a `  2
) )  =  0 )
4241eqeq2d 2415 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( 0 ^ (
a `  2 )
)  <->  ( a ` 
3 )  =  0 ) )
43 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( ( a `  1 )  =  0  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( 0 ^ ( a `  2
) ) )
4443eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( ( a `  1 )  =  0  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( 0 ^ (
a `  2 )
) ) )
4544bibi1d 311 . . . . . . . . . . . 12  |-  ( ( a `  1 )  =  0  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  0 )  <-> 
( ( a ` 
3 )  =  ( 0 ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  0 ) ) )
4642, 45syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  =  0  ->  ( (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( a `  3 )  =  0 ) ) )
4746pm5.32d 621 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
a `  1 )  =  0  /\  (
a `  3 )  =  0 ) ) )
4839, 47orbi12d 691 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )  \/  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
4925, 48syl5bb 249 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  \/  ( a ` 
1 )  =  0 )  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
5021, 49bitrd 245 . . . . . . 7  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  <->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
5150pm5.32da 623 . . . . . 6  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
2 )  e.  NN  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  <-> 
( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) ) )
522, 51syl5bb 249 . . . . 5  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  /\  ( a ` 
2 )  e.  NN ) 
<->  ( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) ) )
53 ancom 438 . . . . . 6  |-  ( ( ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  -.  ( a `  2
)  e.  NN )  <-> 
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )
54 2nn 10089 . . . . . . . . . . . 12  |-  2  e.  NN
5554jm2.27dlem3 26972 . . . . . . . . . . 11  |-  2  e.  ( 1 ... 2
)
567, 55sselii 3305 . . . . . . . . . 10  |-  2  e.  ( 1 ... 3
)
57 ffvelrn 5827 . . . . . . . . . 10  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  2  e.  ( 1 ... 3 ) )  ->  ( a `  2 )  e. 
NN0 )
583, 56, 57sylancl 644 . . . . . . . . 9  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  2 )  e.  NN0 )
59 elnn0 10179 . . . . . . . . . . 11  |-  ( ( a `  2 )  e.  NN0  <->  ( ( a `
 2 )  e.  NN  \/  ( a `
 2 )  =  0 ) )
60 pm2.53 363 . . . . . . . . . . 11  |-  ( ( ( a `  2
)  e.  NN  \/  ( a `  2
)  =  0 )  ->  ( -.  (
a `  2 )  e.  NN  ->  ( a `  2 )  =  0 ) )
6159, 60sylbi 188 . . . . . . . . . 10  |-  ( ( a `  2 )  e.  NN0  ->  ( -.  ( a `  2
)  e.  NN  ->  ( a `  2 )  =  0 ) )
62 0nnn 9987 . . . . . . . . . . 11  |-  -.  0  e.  NN
63 eleq1 2464 . . . . . . . . . . 11  |-  ( ( a `  2 )  =  0  ->  (
( a `  2
)  e.  NN  <->  0  e.  NN ) )
6462, 63mtbiri 295 . . . . . . . . . 10  |-  ( ( a `  2 )  =  0  ->  -.  ( a `  2
)  e.  NN )
6561, 64impbid1 195 . . . . . . . . 9  |-  ( ( a `  2 )  e.  NN0  ->  ( -.  ( a `  2
)  e.  NN  <->  ( a `  2 )  =  0 ) )
6658, 65syl 16 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  ( -.  ( a `  2
)  e.  NN  <->  ( a `  2 )  =  0 ) )
6766anbi1d 686 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
6813nn0cnd 10232 . . . . . . . . . . 11  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  1 )  e.  CC )
6968exp0d 11472 . . . . . . . . . 10  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  1
) ^ 0 )  =  1 )
7069eqeq2d 2415 . . . . . . . . 9  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ 0 )  <->  ( a `  3 )  =  1 ) )
71 oveq2 6048 . . . . . . . . . . 11  |-  ( ( a `  2 )  =  0  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( ( a `
 1 ) ^
0 ) )
7271eqeq2d 2415 . . . . . . . . . 10  |-  ( ( a `  2 )  =  0  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( ( a ` 
1 ) ^ 0 ) ) )
7372bibi1d 311 . . . . . . . . 9  |-  ( ( a `  2 )  =  0  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 )  <-> 
( ( a ` 
3 )  =  ( ( a `  1
) ^ 0 )  <-> 
( a `  3
)  =  1 ) ) )
7470, 73syl5ibrcom 214 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  2
)  =  0  -> 
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 ) ) )
7574pm5.32d 621 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
2 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  <->  ( ( a `
 2 )  =  0  /\  ( a `
 3 )  =  1 ) ) )
7667, 75bitrd 245 . . . . . 6  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  1 ) ) )
7753, 76syl5bb 249 . . . . 5  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  /\  -.  ( a `
 2 )  e.  NN )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  1 ) ) )
7852, 77orbi12d 691 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  /\  ( a `  2 )  e.  NN )  \/  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  -.  ( a `  2
)  e.  NN ) )  <->  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) ) )
791, 78syl5bb 249 . . 3  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( (
( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) ) )
8079rabbiia 2906 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  =  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }
81 3nn0 10195 . . . . 5  |-  3  e.  NN0
82 ovex 6065 . . . . . 6  |-  ( 1 ... 3 )  e. 
_V
83 mzpproj 26684 . . . . . 6  |-  ( ( ( 1 ... 3
)  e.  _V  /\  2  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
8482, 56, 83mp2an 654 . . . . 5  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 2 ) )  e.  (mzPoly `  (
1 ... 3 ) )
85 elnnrabdioph 26757 . . . . 5  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  e.  NN }  e.  (Dioph `  3
) )
8681, 84, 85mp2an 654 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  2 )  e.  NN }  e.  (Dioph `  3 )
87 mzpproj 26684 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  1  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
8882, 11, 87mp2an 654 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 1 ) )  e.  (mzPoly `  (
1 ... 3 ) )
89 1z 10267 . . . . . . . . 9  |-  1  e.  ZZ
90 mzpconstmpt 26687 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  1  e.  ZZ )  ->  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )
9182, 89, 90mp2an 654 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  1 )  e.  (mzPoly `  (
1 ... 3 ) )
92 eqrabdioph 26726 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) )  /\  (
a  e.  ( ZZ 
^m  ( 1 ... 3 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  1 }  e.  (Dioph ` 
3 ) )
9381, 88, 91, 92mp3an 1279 . . . . . . 7  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  1 )  =  1 }  e.  (Dioph `  3 )
94 3nn 10090 . . . . . . . . . 10  |-  3  e.  NN
9594jm2.27dlem3 26972 . . . . . . . . 9  |-  3  e.  ( 1 ... 3
)
96 mzpproj 26684 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  3  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
9782, 95, 96mp2an 654 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 3 ) )  e.  (mzPoly `  (
1 ... 3 ) )
98 eqrabdioph 26726 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) )  /\  (
a  e.  ( ZZ 
^m  ( 1 ... 3 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
3 )  =  1 }  e.  (Dioph ` 
3 ) )
9981, 97, 91, 98mp3an 1279 . . . . . . 7  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  1 }  e.  (Dioph `  3 )
100 anrabdioph 26729 . . . . . . 7  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  1 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  1 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 ) )
10193, 99, 100mp2an 654 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 )
102 expdiophlem2 26983 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) }  e.  (Dioph `  3 )
103 orrabdioph 26730 . . . . . 6  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 ) }  e.  (Dioph `  3 )  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) }  e.  (Dioph `  3 ) )
104101, 102, 103mp2an 654 . . . . 5  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) }  e.  (Dioph ` 
3 )
105 eq0rabdioph 26725 . . . . . . 7  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  0 }  e.  (Dioph ` 
3 ) )
10681, 88, 105mp2an 654 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  1 )  =  0 }  e.  (Dioph `  3 )
107 eq0rabdioph 26725 . . . . . . 7  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
3 )  =  0 }  e.  (Dioph ` 
3 ) )
10881, 97, 107mp2an 654 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  0 }  e.  (Dioph `  3 )
109 anrabdioph 26729 . . . . . 6  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  0 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  0 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) }  e.  (Dioph ` 
3 ) )
110106, 108, 109mp2an 654 . . . . 5  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) }  e.  (Dioph ` 
3 )
111 orrabdioph 26730 . . . . 5  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) }  e.  (Dioph `  3 )  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  0 ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) }  e.  (Dioph `  3
) )
112104, 110, 111mp2an 654 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) }  e.  (Dioph `  3 )
113 anrabdioph 26729 . . . 4  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  e.  NN }  e.  (Dioph `  3
)  /\  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) }  e.  (Dioph `  3 ) )
11486, 112, 113mp2an 654 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) }  e.  (Dioph `  3 )
115 eq0rabdioph 26725 . . . . 5  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  =  0 }  e.  (Dioph ` 
3 ) )
11681, 84, 115mp2an 654 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  2 )  =  0 }  e.  (Dioph `  3 )
117 anrabdioph 26729 . . . 4  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  =  0 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  1 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 ) )
118116, 99, 117mp2an 654 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 )
119 orrabdioph 26730 . . 3  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( a `
 2 )  e.  NN  /\  ( ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( a ` 
2 )  =  0  /\  ( a ` 
3 )  =  1 ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }  e.  (Dioph `  3 ) )
120114, 118, 119mp2an 654 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }  e.  (Dioph `  3 )
12180, 120eqeltri 2474 1  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  e.  (Dioph `  3 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   {crab 2670   _Vcvv 2916    e. cmpt 4226   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   0cc0 8946   1c1 8947   NNcn 9956   2c2 10005   3c3 10006   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999   ^cexp 11337  mzPolycmzp 26669  Diophcdioph 26703
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-numer 13082  df-denom 13083  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-mzpcl 26670  df-mzp 26671  df-dioph 26704  df-squarenn 26794  df-pell1qr 26795  df-pell14qr 26796  df-pell1234qr 26797  df-pellfund 26798  df-rmx 26855  df-rmy 26856
  Copyright terms: Public domain W3C validator