MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcnv Structured version   Unicode version

Theorem expcnv 13331
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
expcnv.1  |-  ( ph  ->  A  e.  CC )
expcnv.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
Assertion
Ref Expression
expcnv  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 10901 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10682 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  1  e.  ZZ )
3 nn0ex 10590 . . . . 5  |-  NN0  e.  _V
43mptex 5953 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
54a1i 11 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
6 0cnd 9384 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  0  e.  CC )
7 nnnn0 10591 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
8 oveq2 6104 . . . . . . 7  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
9 eqid 2443 . . . . . . 7  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
10 ovex 6121 . . . . . . 7  |-  ( A ^ k )  e. 
_V
118, 9, 10fvmpt 5779 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
127, 11syl 16 . . . . 5  |-  ( k  e.  NN  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  =  ( A ^
k ) )
13 simpr 461 . . . . . 6  |-  ( (
ph  /\  A  = 
0 )  ->  A  =  0 )
1413oveq1d 6111 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  ( A ^ k )  =  ( 0 ^ k
) )
1512, 14sylan9eqr 2497 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( 0 ^ k ) )
16 0exp 11904 . . . . 5  |-  ( k  e.  NN  ->  (
0 ^ k )  =  0 )
1716adantl 466 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( 0 ^ k
)  =  0 )
1815, 17eqtrd 2475 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  0 )
191, 2, 5, 6, 18climconst 13026 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
20 1zzd 10682 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  1  e.  ZZ )
21 expcnv.2 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  <  1 )
2221adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  <  1 )
23 expcnv.1 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
24 absrpcl 12782 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
2523, 24sylan 471 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  RR+ )
2625reclt1d 11045 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  <  1  <->  1  <  ( 1  /  ( abs `  A ) ) ) )
2722, 26mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  1  <  ( 1  /  ( abs `  A ) ) )
28 1re 9390 . . . . . . . . 9  |-  1  e.  RR
2925rpreccld 11042 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( abs `  A ) )  e.  RR+ )
3029rpred 11032 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( abs `  A ) )  e.  RR )
31 difrp 11029 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( 1  /  ( abs `  A ) )  e.  RR )  -> 
( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
3228, 30, 31sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  <  ( 1  /  ( abs `  A
) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
3327, 32mpbid 210 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( 1  /  ( abs `  A ) )  -  1 )  e.  RR+ )
3433rpreccld 11042 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  RR+ )
3534rpcnd 11034 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC )
36 divcnv 13321 . . . . 5  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC  ->  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
3735, 36syl 16 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) )  ~~>  0 )
38 nnex 10333 . . . . . 6  |-  NN  e.  _V
3938mptex 5953 . . . . 5  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
4039a1i 11 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
41 oveq2 6104 . . . . . . 7  |-  ( n  =  k  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
42 eqid 2443 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )
43 ovex 6121 . . . . . . 7  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  _V
4441, 42, 43fvmpt 5779 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  =  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k ) )
4544adantl 466 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  =  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k ) )
4634rpred 11032 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  RR )
47 nndivre 10362 . . . . . 6  |-  ( ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
4846, 47sylan 471 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
4945, 48eqeltrd 2517 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  e.  RR )
50 oveq2 6104 . . . . . . . 8  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
51 eqid 2443 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
52 ovex 6121 . . . . . . . 8  |-  ( ( abs `  A ) ^ k )  e. 
_V
5350, 51, 52fvmpt 5779 . . . . . . 7  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
5453adantl 466 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
55 nnz 10673 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  ZZ )
56 rpexpcl 11889 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
5725, 55, 56syl2an 477 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
5854, 57eqeltrd 2517 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR+ )
5958rpred 11032 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR )
60 nnrp 11005 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  RR+ )
61 rpmulcl 11017 . . . . . . . 8  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+  /\  k  e.  RR+ )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
6233, 60, 61syl2an 477 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
6362rpred 11032 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR )
64 peano2re 9547 . . . . . . . . . 10  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
6563, 64syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
66 rpexpcl 11889 . . . . . . . . . . 11  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
6729, 55, 66syl2an 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
6867rpred 11032 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR )
6963lep1d 10269 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  +  1 ) )
7030adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
1  /  ( abs `  A ) )  e.  RR )
717adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  k  e.  NN0 )
7229rpge0d 11036 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( 1  /  ( abs `  A ) ) )
7372adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  0  <_  ( 1  /  ( abs `  A ) ) )
74 bernneq2 11996 . . . . . . . . . 10  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR  /\  k  e.  NN0  /\  0  <_ 
( 1  /  ( abs `  A ) ) )  ->  ( (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
7570, 71, 73, 74syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
7663, 65, 68, 69, 75letrd 9533 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( ( 1  /  ( abs `  A
) ) ^ k
) )
7725rpcnne0d 11041 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0 ) )
78 exprec 11910 . . . . . . . . . 10  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
79783expa 1187 . . . . . . . . 9  |-  ( ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0 )  /\  k  e.  ZZ )  ->  ( ( 1  / 
( abs `  A
) ) ^ k
)  =  ( 1  /  ( ( abs `  A ) ^ k
) ) )
8077, 55, 79syl2an 477 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
8176, 80breqtrd 4321 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( 1  / 
( ( abs `  A
) ^ k ) ) )
8262, 57, 81lerec2d 11053 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  <_  ( 1  / 
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k ) ) )
8333rpcnne0d 11041 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 )  =/=  0 ) )
84 nncn 10335 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  CC )
85 nnne0 10359 . . . . . . . 8  |-  ( k  e.  NN  ->  k  =/=  0 )
8684, 85jca 532 . . . . . . 7  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k  =/=  0 ) )
87 recdiv2 10049 . . . . . . 7  |-  ( ( ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 )  =/=  0 )  /\  ( k  e.  CC  /\  k  =/=  0 ) )  -> 
( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
)  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  - 
1 )  x.  k
) ) )
8883, 86, 87syl2an 477 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  =  ( 1  /  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k ) ) )
8982, 88breqtrrd 4323 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  <_  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  k
) )
9089, 54, 453brtr4d 4327 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k ) )
9158rpge0d 11036 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  0  <_  ( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
) )
921, 20, 37, 40, 49, 59, 90, 91climsqz2 13124 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
93 1zzd 10682 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
944a1i 11 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
9539a1i 11 . . . . 5  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
967adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
9796, 11syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
98 expcl 11888 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
9923, 7, 98syl2an 477 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
10097, 99eqeltrd 2517 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
101 absexp 12798 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
10223, 7, 101syl2an 477 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
10397fveq2d 5700 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
10453adantl 466 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
105102, 103, 1043eqtr4rd 2486 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
1061, 93, 94, 95, 100, 105climabs0 13068 . . . 4  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
107106biimpar 485 . . 3  |-  ( (
ph  /\  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )  ~~>  0 )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0 )
10892, 107syldan 470 . 2  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
10919, 108pm2.61dane 2694 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611   _Vcvv 2977   class class class wbr 4297    e. cmpt 4355   ` cfv 5423  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288    + caddc 9290    x. cmul 9292    < clt 9423    <_ cle 9424    - cmin 9600    / cdiv 9998   NNcn 10327   NN0cn0 10584   ZZcz 10651   RR+crp 10996   ^cexp 11870   abscabs 12728    ~~> cli 12967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-2nd 6583  df-recs 6837  df-rdg 6871  df-er 7106  df-pm 7222  df-en 7316  df-dom 7317  df-sdom 7318  df-sup 7696  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-rp 10997  df-fl 11647  df-seq 11812  df-exp 11871  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-clim 12971  df-rlim 12972
This theorem is referenced by:  explecnv  13332  geolim  13335  geo2lim  13340  iscmet3lem3  20806  mbfi1fseqlem6  21203  geomcau  28660  stoweidlem7  29807
  Copyright terms: Public domain W3C validator