MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcn Structured version   Unicode version

Theorem expcn 21104
Description: The power function on complex numbers, for fixed exponent 
N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
expcn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
expcn  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Distinct variable groups:    x, J    x, N

Proof of Theorem expcn
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6283 . . . 4  |-  ( n  =  0  ->  (
x ^ n )  =  ( x ^
0 ) )
21mpteq2dv 4527 . . 3  |-  ( n  =  0  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ 0 ) ) )
32eleq1d 2529 . 2  |-  ( n  =  0  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J ) ) )
4 oveq2 6283 . . . 4  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
54mpteq2dv 4527 . . 3  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
65eleq1d 2529 . 2  |-  ( n  =  k  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) ) )
7 oveq2 6283 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
x ^ n )  =  ( x ^
( k  +  1 ) ) )
87mpteq2dv 4527 . . 3  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
98eleq1d 2529 . 2  |-  ( n  =  ( k  +  1 )  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
10 oveq2 6283 . . . 4  |-  ( n  =  N  ->  (
x ^ n )  =  ( x ^ N ) )
1110mpteq2dv 4527 . . 3  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
1211eleq1d 2529 . 2  |-  ( n  =  N  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ N
) )  e.  ( J  Cn  J ) ) )
13 exp0 12126 . . . 4  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
1413mpteq2ia 4522 . . 3  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  =  ( x  e.  CC  |->  1 )
15 expcn.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
1615cnfldtopon 21018 . . . . . 6  |-  J  e.  (TopOn `  CC )
1716a1i 11 . . . . 5  |-  ( T. 
->  J  e.  (TopOn `  CC ) )
18 1cnd 9601 . . . . 5  |-  ( T. 
->  1  e.  CC )
1917, 17, 18cnmptc 19891 . . . 4  |-  ( T. 
->  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J ) )
2019trud 1383 . . 3  |-  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J )
2114, 20eqeltri 2544 . 2  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J )
22 oveq1 6282 . . . . . 6  |-  ( x  =  n  ->  (
x ^ ( k  +  1 ) )  =  ( n ^
( k  +  1 ) ) )
2322cbvmptv 4531 . . . . 5  |-  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )
24 id 22 . . . . . . 7  |-  ( n  e.  CC  ->  n  e.  CC )
25 simpl 457 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  k  e.  NN0 )
26 expp1 12129 . . . . . . 7  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k )  x.  n ) )
2724, 25, 26syl2anr 478 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  /\  n  e.  CC )  ->  (
n ^ ( k  +  1 ) )  =  ( ( n ^ k )  x.  n ) )
2827mpteq2dva 4526 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k )  x.  n
) ) )
2923, 28syl5eq 2513 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k )  x.  n
) ) )
3016a1i 11 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  J  e.  (TopOn `  CC ) )
31 oveq1 6282 . . . . . . 7  |-  ( x  =  n  ->  (
x ^ k )  =  ( n ^
k ) )
3231cbvmptv 4531 . . . . . 6  |-  ( x  e.  CC  |->  ( x ^ k ) )  =  ( n  e.  CC  |->  ( n ^
k ) )
33 simpr 461 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( J  Cn  J
) )
3432, 33syl5eqelr 2553 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
k ) )  e.  ( J  Cn  J
) )
3530cnmptid 19890 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  n )  e.  ( J  Cn  J
) )
3615mulcn 21099 . . . . . 6  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
3736a1i 11 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  x.  e.  ( ( J  tX  J )  Cn  J
) )
3830, 34, 35, 37cnmpt12f 19895 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( ( n ^ k )  x.  n ) )  e.  ( J  Cn  J
) )
3929, 38eqeltrd 2548 . . 3  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( J  Cn  J
) )
4039ex 434 . 2  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ k ) )  e.  ( J  Cn  J )  -> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
413, 6, 9, 12, 21, 40nn0ind 10946 1  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374   T. wtru 1375    e. wcel 1762    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   CCcc 9479   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486   NN0cn0 10784   ^cexp 12122   TopOpenctopn 14666  ℂfldccnfld 18184  TopOnctopon 19155    Cn ccn 19484    tX ctx 19789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-icc 11525  df-fz 11662  df-fzo 11782  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cn 19487  df-cnp 19488  df-tx 19791  df-hmeo 19984  df-xms 20551  df-ms 20552  df-tms 20553
This theorem is referenced by:  sqcn  21106  expcncf  21154  plycn  22385  psercn2  22545  atansopn  22984  pntlem3  23515  climexp  31102
  Copyright terms: Public domain W3C validator