MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcl2lem Structured version   Unicode version

Theorem expcl2lem 11876
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
expcllem.1  |-  F  C_  CC
expcllem.2  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
expcllem.3  |-  1  e.  F
expcl2lem.4  |-  ( ( x  e.  F  /\  x  =/=  0 )  -> 
( 1  /  x
)  e.  F )
Assertion
Ref Expression
expcl2lem  |-  ( ( A  e.  F  /\  A  =/=  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Distinct variable groups:    x, y, A    x, B    x, F, y
Allowed substitution hint:    B( y)

Proof of Theorem expcl2lem
StepHypRef Expression
1 elznn0nn 10659 . . 3  |-  ( B  e.  ZZ  <->  ( B  e.  NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) ) )
2 expcllem.1 . . . . . . 7  |-  F  C_  CC
3 expcllem.2 . . . . . . 7  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
4 expcllem.3 . . . . . . 7  |-  1  e.  F
52, 3, 4expcllem 11875 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
65ex 434 . . . . 5  |-  ( A  e.  F  ->  ( B  e.  NN0  ->  ( A ^ B )  e.  F ) )
76adantr 465 . . . 4  |-  ( ( A  e.  F  /\  A  =/=  0 )  -> 
( B  e.  NN0  ->  ( A ^ B
)  e.  F ) )
8 simpll 753 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  F )
92, 8sseldi 3353 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  CC )
10 simprl 755 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  RR )
1110recnd 9411 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  CC )
12 nnnn0 10585 . . . . . . . 8  |-  ( -u B  e.  NN  ->  -u B  e.  NN0 )
1312ad2antll 728 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  -u B  e.  NN0 )
14 expneg2 11873 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  -u B  e.  NN0 )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
159, 11, 13, 14syl3anc 1218 . . . . . 6  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ B
)  =  ( 1  /  ( A ^ -u B ) ) )
16 difss 3482 . . . . . . . 8  |-  ( F 
\  { 0 } )  C_  F
17 simpl 457 . . . . . . . . . 10  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A  e.  F  /\  A  =/=  0
) )
18 eldifsn 3999 . . . . . . . . . 10  |-  ( A  e.  ( F  \  { 0 } )  <-> 
( A  e.  F  /\  A  =/=  0
) )
1917, 18sylibr 212 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  ( F  \  { 0 } ) )
2016, 2sstri 3364 . . . . . . . . . 10  |-  ( F 
\  { 0 } )  C_  CC
2116sseli 3351 . . . . . . . . . . . 12  |-  ( x  e.  ( F  \  { 0 } )  ->  x  e.  F
)
2216sseli 3351 . . . . . . . . . . . 12  |-  ( y  e.  ( F  \  { 0 } )  ->  y  e.  F
)
2321, 22, 3syl2an 477 . . . . . . . . . . 11  |-  ( ( x  e.  ( F 
\  { 0 } )  /\  y  e.  ( F  \  {
0 } ) )  ->  ( x  x.  y )  e.  F
)
24 eldifsn 3999 . . . . . . . . . . . . 13  |-  ( x  e.  ( F  \  { 0 } )  <-> 
( x  e.  F  /\  x  =/=  0
) )
252sseli 3351 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  x  e.  CC )
2625anim1i 568 . . . . . . . . . . . . 13  |-  ( ( x  e.  F  /\  x  =/=  0 )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
2724, 26sylbi 195 . . . . . . . . . . . 12  |-  ( x  e.  ( F  \  { 0 } )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
28 eldifsn 3999 . . . . . . . . . . . . 13  |-  ( y  e.  ( F  \  { 0 } )  <-> 
( y  e.  F  /\  y  =/=  0
) )
292sseli 3351 . . . . . . . . . . . . . 14  |-  ( y  e.  F  ->  y  e.  CC )
3029anim1i 568 . . . . . . . . . . . . 13  |-  ( ( y  e.  F  /\  y  =/=  0 )  -> 
( y  e.  CC  /\  y  =/=  0 ) )
3128, 30sylbi 195 . . . . . . . . . . . 12  |-  ( y  e.  ( F  \  { 0 } )  ->  ( y  e.  CC  /\  y  =/=  0 ) )
32 mulne0 9977 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( x  x.  y
)  =/=  0 )
3327, 31, 32syl2an 477 . . . . . . . . . . 11  |-  ( ( x  e.  ( F 
\  { 0 } )  /\  y  e.  ( F  \  {
0 } ) )  ->  ( x  x.  y )  =/=  0
)
34 eldifsn 3999 . . . . . . . . . . 11  |-  ( ( x  x.  y )  e.  ( F  \  { 0 } )  <-> 
( ( x  x.  y )  e.  F  /\  ( x  x.  y
)  =/=  0 ) )
3523, 33, 34sylanbrc 664 . . . . . . . . . 10  |-  ( ( x  e.  ( F 
\  { 0 } )  /\  y  e.  ( F  \  {
0 } ) )  ->  ( x  x.  y )  e.  ( F  \  { 0 } ) )
36 ax-1ne0 9350 . . . . . . . . . . 11  |-  1  =/=  0
37 eldifsn 3999 . . . . . . . . . . 11  |-  ( 1  e.  ( F  \  { 0 } )  <-> 
( 1  e.  F  /\  1  =/=  0
) )
384, 36, 37mpbir2an 911 . . . . . . . . . 10  |-  1  e.  ( F  \  {
0 } )
3920, 35, 38expcllem 11875 . . . . . . . . 9  |-  ( ( A  e.  ( F 
\  { 0 } )  /\  -u B  e.  NN0 )  ->  ( A ^ -u B )  e.  ( F  \  { 0 } ) )
4019, 13, 39syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ -u B
)  e.  ( F 
\  { 0 } ) )
4116, 40sseldi 3353 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ -u B
)  e.  F )
42 eldifsn 3999 . . . . . . . . 9  |-  ( ( A ^ -u B
)  e.  ( F 
\  { 0 } )  <->  ( ( A ^ -u B )  e.  F  /\  ( A ^ -u B )  =/=  0 ) )
4340, 42sylib 196 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( ( A ^ -u B )  e.  F  /\  ( A ^ -u B
)  =/=  0 ) )
4443simprd 463 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ -u B
)  =/=  0 )
45 neeq1 2615 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
x  =/=  0  <->  ( A ^ -u B )  =/=  0 ) )
46 oveq2 6098 . . . . . . . . . 10  |-  ( x  =  ( A ^ -u B )  ->  (
1  /  x )  =  ( 1  / 
( A ^ -u B
) ) )
4746eleq1d 2508 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
( 1  /  x
)  e.  F  <->  ( 1  /  ( A ^ -u B ) )  e.  F ) )
4845, 47imbi12d 320 . . . . . . . 8  |-  ( x  =  ( A ^ -u B )  ->  (
( x  =/=  0  ->  ( 1  /  x
)  e.  F )  <-> 
( ( A ^ -u B )  =/=  0  ->  ( 1  /  ( A ^ -u B ) )  e.  F ) ) )
49 expcl2lem.4 . . . . . . . . 9  |-  ( ( x  e.  F  /\  x  =/=  0 )  -> 
( 1  /  x
)  e.  F )
5049ex 434 . . . . . . . 8  |-  ( x  e.  F  ->  (
x  =/=  0  -> 
( 1  /  x
)  e.  F ) )
5148, 50vtoclga 3035 . . . . . . 7  |-  ( ( A ^ -u B
)  e.  F  -> 
( ( A ^ -u B )  =/=  0  ->  ( 1  /  ( A ^ -u B ) )  e.  F ) )
5241, 44, 51sylc 60 . . . . . 6  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( 1  /  ( A ^ -u B ) )  e.  F )
5315, 52eqeltrd 2516 . . . . 5  |-  ( ( ( A  e.  F  /\  A  =/=  0
)  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ B
)  e.  F )
5453ex 434 . . . 4  |-  ( ( A  e.  F  /\  A  =/=  0 )  -> 
( ( B  e.  RR  /\  -u B  e.  NN )  ->  ( A ^ B )  e.  F ) )
557, 54jaod 380 . . 3  |-  ( ( A  e.  F  /\  A  =/=  0 )  -> 
( ( B  e. 
NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) )  -> 
( A ^ B
)  e.  F ) )
561, 55syl5bi 217 . 2  |-  ( ( A  e.  F  /\  A  =/=  0 )  -> 
( B  e.  ZZ  ->  ( A ^ B
)  e.  F ) )
57563impia 1184 1  |-  ( ( A  e.  F  /\  A  =/=  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2605    \ cdif 3324    C_ wss 3327   {csn 3876  (class class class)co 6090   CCcc 9279   RRcr 9280   0cc0 9281   1c1 9282    x. cmul 9286   -ucneg 9595    / cdiv 9992   NNcn 10321   NN0cn0 10578   ZZcz 10645   ^cexp 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-n0 10579  df-z 10646  df-uz 10861  df-seq 11806  df-exp 11865
This theorem is referenced by:  rpexpcl  11883  reexpclz  11884  qexpclz  11885  m1expcl2  11886  expclzlem  11888  1exp  11892
  Copyright terms: Public domain W3C validator