MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp5o Structured version   Unicode version

Theorem exp5o 1215
Description: A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
Hypothesis
Ref Expression
exp5o.1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ( th 
/\  ta )  ->  et ) )
Assertion
Ref Expression
exp5o  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )

Proof of Theorem exp5o
StepHypRef Expression
1 exp5o.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ( th 
/\  ta )  ->  et ) )
21expd 436 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  ->  ( ta  ->  et )
) )
323exp 1195 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
This theorem is referenced by:  exp520  1217  bndndx  10790  elicc3  29712
  Copyright terms: Public domain W3C validator