MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp1 Structured version   Unicode version

Theorem exp1 12126
Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
exp1  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )

Proof of Theorem exp1
StepHypRef Expression
1 1nn 10507 . . . 4  |-  1  e.  NN
2 expnnval 12123 . . . 4  |-  ( ( A  e.  CC  /\  1  e.  NN )  ->  ( A ^ 1 )  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) ` 
1 ) )
31, 2mpan2 669 . . 3  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  1
) )
4 1z 10855 . . . 4  |-  1  e.  ZZ
5 seq1 12074 . . . 4  |-  ( 1  e.  ZZ  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) ` 
1 )  =  ( ( NN  X.  { A } ) `  1
) )
64, 5ax-mp 5 . . 3  |-  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) ` 
1 )  =  ( ( NN  X.  { A } ) `  1
)
73, 6syl6eq 2459 . 2  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  ( ( NN  X.  { A } ) ` 
1 ) )
8 fvconst2g 6061 . . 3  |-  ( ( A  e.  CC  /\  1  e.  NN )  ->  ( ( NN  X.  { A } ) ` 
1 )  =  A )
91, 8mpan2 669 . 2  |-  ( A  e.  CC  ->  (
( NN  X.  { A } ) `  1
)  =  A )
107, 9eqtrd 2443 1  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   {csn 3971    X. cxp 4940   ` cfv 5525  (class class class)co 6234   CCcc 9440   1c1 9443    x. cmul 9447   NNcn 10496   ZZcz 10825    seqcseq 12061   ^cexp 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-2nd 6739  df-recs 6999  df-rdg 7033  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-nn 10497  df-n0 10757  df-z 10826  df-uz 11046  df-seq 12062  df-exp 12121
This theorem is referenced by:  expp1  12127  expn1  12130  expcllem  12131  expeq0  12150  expp1z  12169  expm1  12170  sqval  12182  expnbnd  12249  digit1  12254  exp1d  12259  faclbnd4lem1  12325  climcndslem1  13719  climcndslem2  13720  geoisum1  13747  ef4p  13949  efgt1p2  13950  efgt1p  13951  rpnnen2lem3  14051  modxp1i  14657  numexp1  14664  psgnpmtr  16751  lt6abl  17113  iblcnlem1  22378  itgcnlem  22380  dvexp  22540  dveflem  22564  plyid  22790  coeidp  22844  dgrid  22845  cxp1  23238  1cubrlem  23389  1cubr  23390  log2ublem3  23496  basellem5  23631  perfectlem2  23778  logdivsum  23991  log2sumbnd  24002  ipval2  25911  subfacval2  29365  bpoly1  30474  dvasin  31455  areacirclem1  31459  expmordi  35225  perfectALTVlem2  37777  41prothprmlem2  37844  exple2lt6  38448  pw2m1lepw2m1  38618  logbpw2m1  38678  nnpw2pmod  38694
  Copyright terms: Public domain W3C validator