MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmo Structured version   Unicode version

Theorem exmo 2304
Description: Something exists or at most one exists. (Contributed by NM, 8-Mar-1995.)
Assertion
Ref Expression
exmo  |-  ( E. x ph  \/  E* x ph )

Proof of Theorem exmo
StepHypRef Expression
1 pm2.21 108 . . 3  |-  ( -. 
E. x ph  ->  ( E. x ph  ->  E! x ph ) )
2 df-mo 2280 . . 3  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
31, 2sylibr 212 . 2  |-  ( -. 
E. x ph  ->  E* x ph )
43orri 376 1  |-  ( E. x ph  \/  E* x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368   E.wex 1596   E!weu 2275   E*wmo 2276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-mo 2280
This theorem is referenced by:  exmoeu  2311  moanim  2352  moexex  2371  moexexOLD  2372  mo2icl  3282  mosubopt  4745  dff3  6034  brdom3  8906  mof  29480
  Copyright terms: Public domain W3C validator