MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidneOLD Structured version   Unicode version

Theorem exmidneOLD 2647
Description: Obsolete proof of exmidne 2646 as of 17-Nov-2019. (Contributed by NM, 3-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
exmidneOLD  |-  ( A  =  B  \/  A  =/=  B )

Proof of Theorem exmidneOLD
StepHypRef Expression
1 exmid 415 . 2  |-  ( A  =  B  \/  -.  A  =  B )
2 df-ne 2638 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
32orbi2i 519 . 2  |-  ( ( A  =  B  \/  A  =/=  B )  <->  ( A  =  B  \/  -.  A  =  B )
)
41, 3mpbir 209 1  |-  ( A  =  B  \/  A  =/=  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 368    = wceq 1381    =/= wne 2636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-ne 2638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator