MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidne Structured version   Unicode version

Theorem exmidne 2608
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.)
Assertion
Ref Expression
exmidne  |-  ( A  =  B  \/  A  =/=  B )

Proof of Theorem exmidne
StepHypRef Expression
1 df-ne 2600 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
21biimpri 206 . 2  |-  ( -.  A  =  B  ->  A  =/=  B )
32orri 374 1  |-  ( A  =  B  \/  A  =/=  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 366    = wceq 1405    =/= wne 2598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 368  df-ne 2600
This theorem is referenced by:  elnn1uz2  11203  hashv01gt1  12465  subfacp1lem6  29482  tendoeq2  33793  ax6e2ndeqVD  36740  ax6e2ndeqALT  36762
  Copyright terms: Public domain W3C validator