Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exlimii Structured version   Visualization version   Unicode version

Theorem exlimii 31426
 Description: Inference associated with exlimi 1994. Inferring a theorem when it is implied by an antecedent which may be true. (Contributed by BJ, 15-Sep-2018.)
Hypotheses
Ref Expression
exlimii.1
exlimii.2
exlimii.3
Assertion
Ref Expression
exlimii

Proof of Theorem exlimii
StepHypRef Expression
1 exlimii.3 . 2
2 exlimii.1 . . 3
3 exlimii.2 . . 3
42, 3exlimi 1994 . 2
51, 4ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wex 1662  wnf 1666 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-12 1932 This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1663  df-nf 1667 This theorem is referenced by:  exlimiieq1  31429  exlimiieq2  31430
 Copyright terms: Public domain W3C validator