MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimih Structured version   Visualization version   Unicode version

Theorem exlimih 1995
Description: Inference associated with 19.23 1992. See exlimiv 1775 for a version with a dv condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypotheses
Ref Expression
exlimih.1  |-  ( ps 
->  A. x ps )
exlimih.2  |-  ( ph  ->  ps )
Assertion
Ref Expression
exlimih  |-  ( E. x ph  ->  ps )

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3  |-  ( ps 
->  A. x ps )
21nfi 1673 . 2  |-  F/ x ps
3 exlimih.2 . 2  |-  ( ph  ->  ps )
42, 3exlimi 1994 1  |-  ( E. x ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1441   E.wex 1662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-12 1932
This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1663  df-nf 1667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator