Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimdd Structured version   Unicode version

Theorem exlimdd 2008
 Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
exlimdd.1
exlimdd.2
exlimdd.3
exlimdd.4
Assertion
Ref Expression
exlimdd

Proof of Theorem exlimdd
StepHypRef Expression
1 exlimdd.3 . 2
2 exlimdd.1 . . 3
3 exlimdd.2 . . 3
4 exlimdd.4 . . . 4
54ex 432 . . 3
62, 3, 5exlimd 1942 . 2
71, 6mpd 15 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367  wex 1633  wnf 1637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-12 1878 This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1634  df-nf 1638 This theorem is referenced by:  fvmptdf  5945  ovmpt2df  6415  ex-natded9.26  25557  exlimimdd  31260  suprnmpt  36826  stoweidlem43  37193  stoweidlem44  37194  stoweidlem54  37204
 Copyright terms: Public domain W3C validator