Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Structured version   Unicode version

Theorem exlimd 1900
 Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1
exlimd.2
exlimd.3
Assertion
Ref Expression
exlimd

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3
2 exlimd.3 . . 3
31, 2eximd 1868 . 2
4 exlimd.2 . . 3
5419.9 1879 . 2
63, 5syl6ib 226 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wex 1599  wnf 1603 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-12 1840 This theorem depends on definitions:  df-bi 185  df-ex 1600  df-nf 1604 This theorem is referenced by:  exlimdh  1901  exlimdd  1966  equs5  2078  moexex  2349  2eu6  2369  exists2  2375  ceqsalgALT  3121  alxfr  4650  copsex2t  4724  mosubopt  4735  ovmpt2df  6419  ov3  6424  tz7.48-1  7110  ac6c4  8864  fsum2dlem  13564  gsum2d2lem  16875  fprod2dlem  29085  wl-lem-moexsb  29992  exlimddvf  30501  stoweidlem27  31698  fourierdlem31  31809  bj-equs5v  34080
 Copyright terms: Public domain W3C validator