![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version Unicode version |
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
exim |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | aleximi 1704 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1669 ax-4 1682 |
This theorem depends on definitions: df-bi 189 df-ex 1664 |
This theorem is referenced by: eximi 1707 19.23v 1818 19.8a 1935 19.8aOLD 1936 19.9ht 1967 19.23tOLD 1992 spimt 2097 elex2 3058 elex22 3059 vtoclegft 3121 spcimgft 3125 bj-axdd2 31175 bj-2exim 31203 bj-exlimh 31211 bj-sbex 31239 bj-alequex 31309 bj-spimtv 31319 bj-spcimdv 31493 wl-19.8a 31910 2exim 36728 pm11.71 36747 onfrALTlem2 36912 19.41rg 36917 ax6e2nd 36925 elex2VD 37234 elex22VD 37235 onfrALTlem2VD 37286 19.41rgVD 37299 ax6e2eqVD 37304 ax6e2ndVD 37305 ax6e2ndeqVD 37306 ax6e2ndALT 37327 ax6e2ndeqALT 37328 |
Copyright terms: Public domain | W3C validator |