MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exdistr Structured version   Visualization version   Unicode version

Theorem exdistr 1843
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exdistr  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem exdistr
StepHypRef Expression
1 19.42v 1842 . 2  |-  ( E. y ( ph  /\  ps )  <->  ( ph  /\  E. y ps ) )
21exbii 1726 1  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 376   E.wex 1671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813
This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672
This theorem is referenced by:  19.42vv  1844  3exdistr  1847  sbccomlem  3326  coass  5361  uniuni  6619  eulerpartlemgvv  29282  bnj986  29837  dfiota3  30761  ac6s6f  32480
  Copyright terms: Public domain W3C validator